首页 > 最新文献

IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium最新文献

英文 中文
Innovative Multicarrier Broadband Waveforms for Future GNSS Applications - A System Overview 面向未来GNSS应用的创新多载波宽带波形-系统概述
T. Nguyen, Charles H. Lee, Yinwei Chen, S. Behseta, Dan Shen, Gen-yong Chen, John Nguyen, Xiwen Kang, K. Pham
{"title":"Innovative Multicarrier Broadband Waveforms for Future GNSS Applications - A System Overview","authors":"T. Nguyen, Charles H. Lee, Yinwei Chen, S. Behseta, Dan Shen, Gen-yong Chen, John Nguyen, Xiwen Kang, K. Pham","doi":"10.1109/PLANS53410.2023.10140018","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140018","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"459 1","pages":"952-967"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76967075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges. 资源极度受限平台上的惯性导航:方法、机遇和挑战。
Pub Date : 2023-04-01 Epub Date: 2023-06-08 DOI: 10.1109/plans53410.2023.10139997
Swapnil Sayan Saha, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, Mani Srivastava

Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31-134× smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward.

惯性导航为在资源极为有限的物联网(IoT)平台上拒绝GPS的环境中进行定位提供了一种占地面积小、功耗低、成本低的途径。传统上,在惯性里程计中,使用特定应用的启发式和基于物理的运动学模型来减轻漂移的诅咒。这些技术虽然很轻,但无法处理域偏移和环境非线性。最近,与基于启发式的方法相比,深度神经惯性序列学习在没有人类知识的情况下捕捉非线性运动动力学方面显示出优越的里程分辨率。这些基于人工智能的技术缺乏数据,资源使用过度,无法保证遵循底层系统物理。本文强调了将实时人工智能增强惯性导航算法移植到物联网平台的独特方法、机遇和挑战。首先,我们讨论了平台感知神经架构搜索与超轻模型主干相结合如何产生31-134倍小的神经惯性里程计模型,但达到或超过最先进的人工智能增强技术的定位分辨率。该框架可以生成适合定位人类、动物、水下传感器、飞行器和精密机器人的模型。接下来,我们将展示神经符号人工智能的技术如何产生物理信息和可解释的神经惯性导航模型。之后,我们提供了在一个新领域中微调预先训练的里程计模型的机会,只需1分钟的标记数据,同时讨论了廉价的数据收集和标记技术。最后,我们确定了几个开放的研究挑战,需要在未来仔细考虑。
{"title":"Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges.","authors":"Swapnil Sayan Saha, Yayun Du, Sandeep Singh Sandha, Luis Antonio Garcia, Mohammad Khalid Jawed, Mani Srivastava","doi":"10.1109/plans53410.2023.10139997","DOIUrl":"10.1109/plans53410.2023.10139997","url":null,"abstract":"<p><p>Inertial navigation provides a small footprint, low-power, and low-cost pathway for localization in GPS-denied environments on extremely resource-constrained Internet-of-Things (IoT) platforms. Traditionally, application-specific heuristics and physics-based kinematic models are used to mitigate the curse of drift in inertial odometry. These techniques, albeit lightweight, fail to handle domain shifts and environmental non-linearities. Recently, deep neural-inertial sequence learning has shown superior odometric resolution in capturing non-linear motion dynamics without human knowledge over heuristic-based methods. These AI-based techniques are data-hungry, suffer from excessive resource usage, and cannot guarantee following the underlying system physics. This paper highlights the unique methods, opportunities, and challenges in porting real-time AI-enhanced inertial navigation algorithms onto IoT platforms. First, we discuss how platform-aware neural architecture search coupled with ultra-lightweight model backbones can yield neural-inertial odometry models that are 31-134× smaller yet achieve or exceed the localization resolution of state-of-the-art AI-enhanced techniques. The framework can generate models suitable for locating humans, animals, underwater sensors, aerial vehicles, and precision robots. Next, we showcase how techniques from neurosymbolic AI can yield physics-informed and interpretable neural-inertial navigation models. Afterward, we present opportunities for fine-tuning pre-trained odometry models in a new domain with as little as 1 minute of labeled data, while discussing inexpensive data collection and labeling techniques. Finally, we identify several open research challenges that demand careful consideration moving forward.</p>","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"2023 ","pages":"708-723"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512424/pdf/nihms-1928657.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doppler Processing for Satellite Navigation 卫星导航的多普勒处理
F. Graas
{"title":"Doppler Processing for Satellite Navigation","authors":"F. Graas","doi":"10.1109/PLANS53410.2023.10140011","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140011","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"27 1","pages":"365-371"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73895921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q-Learning Model Covariance Adaptation of Rao-Blackwellized Particle Filtering in Airborne Geomagnetic Navigation 航空地磁导航中rao - blackwell化粒子滤波的q -学习模型协方差自适应
A. Cuenca, H. Moncayo
{"title":"Q-Learning Model Covariance Adaptation of Rao-Blackwellized Particle Filtering in Airborne Geomagnetic Navigation","authors":"A. Cuenca, H. Moncayo","doi":"10.1109/PLANS53410.2023.10140131","DOIUrl":"https://doi.org/10.1109/PLANS53410.2023.10140131","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"16 1","pages":"143-149"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88303701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on multi-model adaptive hull deformation measurement algorithm 多模型自适应船体变形测量算法研究
Yanyan Wang, Ya Zhang, Kai Wang, Zhuo Wang, Jiachong Chang, Dingjie Xu
{"title":"Research on multi-model adaptive hull deformation measurement algorithm","authors":"Yanyan Wang, Ya Zhang, Kai Wang, Zhuo Wang, Jiachong Chang, Dingjie Xu","doi":"10.1109/PLANS46316.2020.9109889","DOIUrl":"https://doi.org/10.1109/PLANS46316.2020.9109889","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"54 1","pages":"718-722"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86154510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on pedestrian location based on dual MIMU/magnetometer/ultrasonic module 基于MIMU/磁强计/超声波双模块的行人定位研究
Qiuying Wang, Zheng Guo, Minghui Zhang, Xufei Cui, Hui Wu, Li Jia
{"title":"Research on pedestrian location based on dual MIMU/magnetometer/ultrasonic module","authors":"Qiuying Wang, Zheng Guo, Minghui Zhang, Xufei Cui, Hui Wu, Li Jia","doi":"10.1109/PLANS.2018.8373428","DOIUrl":"https://doi.org/10.1109/PLANS.2018.8373428","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"76 1","pages":"565-570"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73026605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The operation and mechanization of the hemispherical resonator gyroscope 半球形谐振陀螺仪的操作和机械化
A. Matthews
{"title":"The operation and mechanization of the hemispherical resonator gyroscope","authors":"A. Matthews","doi":"10.1109/PLANS.2018.8373357","DOIUrl":"https://doi.org/10.1109/PLANS.2018.8373357","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"148 1","pages":"7-14"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77844482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated navigation method using marine inertial navigation system and star sensor based on model predictive filtering 基于模型预测滤波的船用惯性导航系统和星敏感器组合导航方法
Qiuying Wang, Minghui Zhang, Zheng Guo, Hui Wu
{"title":"Integrated navigation method using marine inertial navigation system and star sensor based on model predictive filtering","authors":"Qiuying Wang, Minghui Zhang, Zheng Guo, Hui Wu","doi":"10.1109/PLANS.2018.8373462","DOIUrl":"https://doi.org/10.1109/PLANS.2018.8373462","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"15 1","pages":"850-857"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84625793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method of inertial integrated navigation based on low cost MEMS sensors 基于低成本MEMS传感器的惯性组合导航方法
Zhengchun Wang, Zhi Xiong, Pin Lyu, Jianxin Xu, Xin Huang, Limin Xu
{"title":"A method of inertial integrated navigation based on low cost MEMS sensors","authors":"Zhengchun Wang, Zhi Xiong, Pin Lyu, Jianxin Xu, Xin Huang, Limin Xu","doi":"10.1109/PLANS.2018.8373529","DOIUrl":"https://doi.org/10.1109/PLANS.2018.8373529","url":null,"abstract":"","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"20 1","pages":"1372-1378"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73516490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple carrier correlators based carrier phase multipath mitigation technique for real time kinematic 基于多载波相关器的实时载波相位多径缓解技术
R. Hang, Zhang Lei, Liu Shuo, Liu Feng
Mitigating carrier phase multipath errors continue to be a significant challenge for Real Time Kinematic (RTK) using Global Navigation Satellite Systems (GNSS). As the multipath error is dependent on the operational environment and therefore cannot be mitigated by differencing techniques, we propose a Multiple Carrier Correlators based carrier phase multipath mitigation technique (MCC) for the high precise positioning in the environment with multipath. In the method, two extra carrier correlators at the phases of pi/4 and −pi/4 are introduced and a maximum likelihood estimator is developed based on these correlator outputs to estimate the carrier phase of the line-of-sight signal. A Monte Carlo simulation is carried out to evaluate the carrier phase measuring accuracy of the proposed method under multipath. The experiments using real GNSS signal data are also conducted in a certain multipath scenario and an urban canyon area with random multipath. The results show the proposed method can greatly improve the performance of Real Time Kinematic positioning in the situation with multipath and outperforms the traditional multicorrelator based carrier phase multipath mitigation method.
减轻载波相位多路径误差仍然是使用全球导航卫星系统(GNSS)的实时运动学(RTK)面临的重大挑战。由于多径误差依赖于操作环境,因此无法通过差分技术来缓解,针对多径环境下的高精度定位,提出了一种基于多载波相关器的载波相位多径缓解技术(MCC)。在该方法中,在pi/4和- pi/4相位处引入两个额外的载波相关器,并基于这些相关器的输出开发了一个极大似然估计器来估计视距信号的载波相位。通过蒙特卡罗仿真验证了该方法在多径条件下的载波相位测量精度。利用真实GNSS信号数据,在一定多径场景和随机多径的城市峡谷地区进行了实验。结果表明,该方法可以大大提高多径情况下的实时运动定位性能,优于传统的基于多相关器的载波相位多径缓解方法。
{"title":"Multiple carrier correlators based carrier phase multipath mitigation technique for real time kinematic","authors":"R. Hang, Zhang Lei, Liu Shuo, Liu Feng","doi":"10.1109/PLANS.2016.7479710","DOIUrl":"https://doi.org/10.1109/PLANS.2016.7479710","url":null,"abstract":"Mitigating carrier phase multipath errors continue to be a significant challenge for Real Time Kinematic (RTK) using Global Navigation Satellite Systems (GNSS). As the multipath error is dependent on the operational environment and therefore cannot be mitigated by differencing techniques, we propose a Multiple Carrier Correlators based carrier phase multipath mitigation technique (MCC) for the high precise positioning in the environment with multipath. In the method, two extra carrier correlators at the phases of pi/4 and −pi/4 are introduced and a maximum likelihood estimator is developed based on these correlator outputs to estimate the carrier phase of the line-of-sight signal. A Monte Carlo simulation is carried out to evaluate the carrier phase measuring accuracy of the proposed method under multipath. The experiments using real GNSS signal data are also conducted in a certain multipath scenario and an urban canyon area with random multipath. The results show the proposed method can greatly improve the performance of Real Time Kinematic positioning in the situation with multipath and outperforms the traditional multicorrelator based carrier phase multipath mitigation method.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"33 1","pages":"263-271"},"PeriodicalIF":0.0,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85436938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1