H. Yuan, B. Cai, Xiaocong Song, Ding Tang, B. Yang
{"title":"Insight on the reduction of copper content in slags produced from the Ausmelt Converting Process","authors":"H. Yuan, B. Cai, Xiaocong Song, Ding Tang, B. Yang","doi":"10.2298/JMMB201016013Y","DOIUrl":null,"url":null,"abstract":"The reduction of copper content in converting slag using process control is significant to copper smelter. In this study, the slags produced from the Ausmelt Converting Process for copper matte have been analyzed using X-ray diffraction and chemical analysis. Thermodynamic calculation and effects of various conditions including the lance submerging depth in molten bath, the molten bath temperature, the addition of copper matte, and airflow rate were carried out to lower the content in the slag. Thermodynamic analysis indicates that the decrease of copper content was achieved by reducing Fe3O4, CuFe2O4and Cu2O in the slag, decreasing the magnetism of slag and lowering the viscosity of slag, which is feasible at the operating temperature of the molten bath. Experiments show that the optimal combination of operating conditions were found to be the addition of copper matte between 5000 -7000 kg/h, a lance airflow rate of 13000-14000 Nm3/h and a lance submergence depth into the molten bath of 700-900 mm, in which the copper content in the slag can be effectively reduced from 22.74 wt. % to 7.70 wt. %.This study provides a theoretical support and technical guidance for promoting the utilization of slags from the Ausmelt Converting Process.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"22 14 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/JMMB201016013Y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
The reduction of copper content in converting slag using process control is significant to copper smelter. In this study, the slags produced from the Ausmelt Converting Process for copper matte have been analyzed using X-ray diffraction and chemical analysis. Thermodynamic calculation and effects of various conditions including the lance submerging depth in molten bath, the molten bath temperature, the addition of copper matte, and airflow rate were carried out to lower the content in the slag. Thermodynamic analysis indicates that the decrease of copper content was achieved by reducing Fe3O4, CuFe2O4and Cu2O in the slag, decreasing the magnetism of slag and lowering the viscosity of slag, which is feasible at the operating temperature of the molten bath. Experiments show that the optimal combination of operating conditions were found to be the addition of copper matte between 5000 -7000 kg/h, a lance airflow rate of 13000-14000 Nm3/h and a lance submergence depth into the molten bath of 700-900 mm, in which the copper content in the slag can be effectively reduced from 22.74 wt. % to 7.70 wt. %.This study provides a theoretical support and technical guidance for promoting the utilization of slags from the Ausmelt Converting Process.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.