Effect of Initial Stress on the Propagation Characteristics of Waves in Fiber-Reinforced Transversely Isotropic Thermoelastic Material under an Inviscid Liquid Layer

Rajesh Kumar, Sanjeev Ahuja, S. K. Garg
{"title":"Effect of Initial Stress on the Propagation Characteristics of Waves in Fiber-Reinforced Transversely Isotropic Thermoelastic Material under an Inviscid Liquid Layer","authors":"Rajesh Kumar, Sanjeev Ahuja, S. K. Garg","doi":"10.1155/2014/134276","DOIUrl":null,"url":null,"abstract":"The present investigation deals with the propagation of waves in fiber-reinforced transversely isotropic thermoelastic solid half space with initial stresses under a layer of inviscid liquid. The secular equation for surface equation in compact form is derived after developing the mathematical model. The phase velocity and attenuation coefficients of plane waves are studied numerically for a particular model. Effects of initial stress and thickness of the layer on the phase velocity, attenuation coefficient, and specific loss of energy are predicted graphically in the certain model. A particular case of Rayleigh wave has been discussed and the dispersion curves of the phase velocity and attenuation coefficients have also been presented graphically. Some other particular cases are also deduced from the present investigation.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/134276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The present investigation deals with the propagation of waves in fiber-reinforced transversely isotropic thermoelastic solid half space with initial stresses under a layer of inviscid liquid. The secular equation for surface equation in compact form is derived after developing the mathematical model. The phase velocity and attenuation coefficients of plane waves are studied numerically for a particular model. Effects of initial stress and thickness of the layer on the phase velocity, attenuation coefficient, and specific loss of energy are predicted graphically in the certain model. A particular case of Rayleigh wave has been discussed and the dispersion curves of the phase velocity and attenuation coefficients have also been presented graphically. Some other particular cases are also deduced from the present investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初始应力对无粘液体层下纤维增强横各向同性热弹性材料中波传播特性的影响
本文研究了波在具有初始应力的纤维增强横向各向同性热弹性固体半空间中的传播。在建立数学模型的基础上,导出了曲面方程紧致形式的长期方程。对某一特定模型平面波的相速度和衰减系数进行了数值研究。在一定的模型中以图形方式预测了初始应力和层厚对相速度、衰减系数和比能量损失的影响。讨论了瑞利波的一种特殊情况,并给出了相速度和衰减系数的频散曲线。从目前的调查中还推断出一些其他的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Thermodynamic Degradation Approach to Quantify Human Stress Response Thermodynamics of Low-Dimensional Trapped Fermi Gases Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation Kelvin’s Dissymmetric Models and Consistency Conditions of Multicomponent Gas-Liquid Equilibrium and Capillary Condensation Effect of Magnetic Field on Mixed Convection Heat Transfer in a Lid-Driven Square Cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1