S. Boregowda, R. Handy, Darrah K. Sleeth, N. Riches
The present study provides a thermodynamic degradation approach to model human stress response. Finger skin temperature was used as an indicator of stress response to a stressor (or stressful event) followed by a recovery. The entropy change ( ) is calculated using heat transfer ( ) from the peripheral skin and finger skin temperature ( ). It was hypothesized that the human stress response, as evidenced by finger skin temperature change, is a quasi-static process. The entropy approach is demonstrated using data from a medical school experimental study. The finger skin temperature was measured under three conditions (relaxation, stressor task, and recovery) during the physiological test profile. The entropy change ( ) is postulated as entropy damage ( ), which is a metric for measuring the aging or system degradation. The aging-ratio, , that is, the ratio of entropy change due to stressor to that of recovery, is presented for both male and female subjects. The statistical -tests demonstrate statistical significance in human stress response to stressor and recovery states within and between male and female subjects. This novel approach could be valuable to medical researchers, particularly in the field of occupational health to evaluate human exposure to stressful environments.
{"title":"Using Thermodynamic Degradation Approach to Quantify Human Stress Response","authors":"S. Boregowda, R. Handy, Darrah K. Sleeth, N. Riches","doi":"10.1155/2017/7546823","DOIUrl":"https://doi.org/10.1155/2017/7546823","url":null,"abstract":"The present study provides a thermodynamic degradation approach to model human stress response. Finger skin temperature was used as an indicator of stress response to a stressor (or stressful event) followed by a recovery. The entropy change ( ) is calculated using heat transfer ( ) from the peripheral skin and finger skin temperature ( ). It was hypothesized that the human stress response, as evidenced by finger skin temperature change, is a quasi-static process. The entropy approach is demonstrated using data from a medical school experimental study. The finger skin temperature was measured under three conditions (relaxation, stressor task, and recovery) during the physiological test profile. The entropy change ( ) is postulated as entropy damage ( ), which is a metric for measuring the aging or system degradation. The aging-ratio, , that is, the ratio of entropy change due to stressor to that of recovery, is presented for both male and female subjects. The statistical -tests demonstrate statistical significance in human stress response to stressor and recovery states within and between male and female subjects. This novel approach could be valuable to medical researchers, particularly in the field of occupational health to evaluate human exposure to stressful environments.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"1 1","pages":"7546823"},"PeriodicalIF":0.0,"publicationDate":"2017-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75417029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of low dimensionality on the thermodynamics of a Fermi gas trapped by isotropic power-law potentials are analyzed. Particular attention is given to different characteristic temperatures that emerge, at low dimensionality, in the thermodynamic functions of state and in the thermodynamic susceptibilities (isothermal compressibility and specific heat). An energy-entropy argument that physically favors the relevance of one of these characteristic temperatures, namely, the nonvanishing temperature at which the chemical potential reaches the Fermi energy value, is presented. Such an argument allows interpreting the nonmonotonic dependence of the chemical potential on temperature, as an indicator of the appearance of a thermodynamic regime, where the equilibrium states of a trapped Fermi gas are characterized by larger fluctuations in energy and particle density as is revealed in the corresponding thermodynamics susceptibilities.
{"title":"Thermodynamics of Low-Dimensional Trapped Fermi Gases","authors":"F. J. Sevilla","doi":"10.1155/2017/3060348","DOIUrl":"https://doi.org/10.1155/2017/3060348","url":null,"abstract":"The effects of low dimensionality on the thermodynamics of a Fermi gas trapped by isotropic power-law potentials are analyzed. Particular attention is given to different characteristic temperatures that emerge, at low dimensionality, in the thermodynamic functions of state and in the thermodynamic susceptibilities (isothermal compressibility and specific heat). An energy-entropy argument that physically favors the relevance of one of these characteristic temperatures, namely, the nonvanishing temperature at which the chemical potential reaches the Fermi energy value, is presented. Such an argument allows interpreting the nonmonotonic dependence of the chemical potential on temperature, as an indicator of the appearance of a thermodynamic regime, where the equilibrium states of a trapped Fermi gas are characterized by larger fluctuations in energy and particle density as is revealed in the corresponding thermodynamics susceptibilities.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"21 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75589247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.
{"title":"Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation","authors":"Khilap Singh, Manoj Kumar","doi":"10.1155/2016/8307980","DOIUrl":"https://doi.org/10.1155/2016/8307980","url":null,"abstract":"The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"11 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82477693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To describe phase equilibrium of mixtures, we develop a nonclassical approach based on using different equations of state for gas and liquid. We show that not all the types of EOS are admissible but only those which verify some specific conditions of consistency. We developed the mathematical theory of this new approach for pure cores and for mixtures, in presence and absence of capillary forces, which leads to explicit analytical relationships for phase concentrations of chemical components. Several examples of comparison with experimental data for binary and ternary mixtures illustrate the feasibility of the suggested approach.
{"title":"Kelvin’s Dissymmetric Models and Consistency Conditions of Multicomponent Gas-Liquid Equilibrium and Capillary Condensation","authors":"M. Panfilov, A. Koldoba","doi":"10.1155/2016/3806364","DOIUrl":"https://doi.org/10.1155/2016/3806364","url":null,"abstract":"To describe phase equilibrium of mixtures, we develop a nonclassical approach based on using different equations of state for gas and liquid. We show that not all the types of EOS are admissible but only those which verify some specific conditions of consistency. We developed the mathematical theory of this new approach for pure cores and for mixtures, in presence and absence of capillary forces, which leads to explicit analytical relationships for phase concentrations of chemical components. Several examples of comparison with experimental data for binary and ternary mixtures illustrate the feasibility of the suggested approach.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"20 1","pages":"3806364"},"PeriodicalIF":0.0,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88973481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of magnetic field on fluid flow and heat transfer in two-dimensional square cavity is analyzed numerically. The vertical walls are insulated; the top wall is maintained at cold temperature, while the bottom wall is maintained at hot temperature, where . The dimensionless governing equations are solved using finite volume method and SIMPLE algorithm. The streamlines and isotherm plots and the variation of Nusselt numbers on hot and cold walls are presented.
{"title":"Effect of Magnetic Field on Mixed Convection Heat Transfer in a Lid-Driven Square Cavity","authors":"N. A. Bakar, A. Karimipour, R. Roslan","doi":"10.1155/2016/3487182","DOIUrl":"https://doi.org/10.1155/2016/3487182","url":null,"abstract":"The effect of magnetic field on fluid flow and heat transfer in two-dimensional square cavity is analyzed numerically. The vertical walls are insulated; the top wall is maintained at cold temperature, while the bottom wall is maintained at hot temperature, where . The dimensionless governing equations are solved using finite volume method and SIMPLE algorithm. The streamlines and isotherm plots and the variation of Nusselt numbers on hot and cold walls are presented.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"343 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2016-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73137780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.
{"title":"Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate","authors":"Rakesh Hari, C. Muraleedharan","doi":"10.1155/2016/1562145","DOIUrl":"https://doi.org/10.1155/2016/1562145","url":null,"abstract":"Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"369 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80432907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heat transfer, pressure loss, and thermal performance assessment in a circular tube heat exchanger with modified-twisted tapes are reported. The rectangular holes are punched out from the general twisted tape to reduce the pressure loss. The influences of the hole sizes (, LR = 0.30, 0.44, 0.78, and 0.88) and twisted ratios (, TR = 1, 1.5, 2, and 4) for the single and double twisted tapes are investigated with a numerical method at turbulent regime, Re = 3000–10,000. The finite volume method and the SIMPLE algorithm are used to investigate for the current research. The numerical results are reported in terms of flow structure and heat transfer behavior and compared with the smooth tube and the regular twisted tape. It is found that the modified-twisted tape provides higher heat transfer rate than the smooth tube due to the longitudinal vortex flows, created by the twisted tape. The longitudinal vortex flows help to increase fluid mixing. The rectangular punched holes of the twisted tape can reduce the pressure loss of the heating system. In addition, the maximum thermal enhancement factor is around 1.39 and 1.31 for the double twisted tape and single twisted tape, respectively, at Re = 3000, LR = 0.78, and TR = 1.
{"title":"Turbulent Forced Convection and Heat Transfer Characteristic in a Circular Tube with Modified-Twisted Tapes","authors":"A. Boonloi, W. Jedsadaratanachai","doi":"10.1155/2016/8235375","DOIUrl":"https://doi.org/10.1155/2016/8235375","url":null,"abstract":"Heat transfer, pressure loss, and thermal performance assessment in a circular tube heat exchanger with modified-twisted tapes are reported. The rectangular holes are punched out from the general twisted tape to reduce the pressure loss. The influences of the hole sizes (, LR = 0.30, 0.44, 0.78, and 0.88) and twisted ratios (, TR = 1, 1.5, 2, and 4) for the single and double twisted tapes are investigated with a numerical method at turbulent regime, Re = 3000–10,000. The finite volume method and the SIMPLE algorithm are used to investigate for the current research. The numerical results are reported in terms of flow structure and heat transfer behavior and compared with the smooth tube and the regular twisted tape. It is found that the modified-twisted tape provides higher heat transfer rate than the smooth tube due to the longitudinal vortex flows, created by the twisted tape. The longitudinal vortex flows help to increase fluid mixing. The rectangular punched holes of the twisted tape can reduce the pressure loss of the heating system. In addition, the maximum thermal enhancement factor is around 1.39 and 1.31 for the double twisted tape and single twisted tape, respectively, at Re = 3000, LR = 0.78, and TR = 1.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"29 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78223875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Why does Planck (1900), referring to Boltzmann’s 1877 probabilistic treatment, obtain his quantum distribution function while Boltzmann did not? To answer this question, both treatments are compared on the basis of Boltzmann’s 1868 three-level scheme (configuration—occupation—occupancy). Some calculations by Planck (1900, 1901, and 1913) and Einstein (1907) are also sketched. For obtaining a quantum distribution, it is crucial to stick with a discrete energy spectrum and to make the limit transitions to infinity at the right place. For correct state counting, the concept of interchangeability of particles is superior to that of indistinguishability.
{"title":"Historical Prospective: Boltzmann’s versus Planck’s State Counting—Why Boltzmann Did Not Arrive at Planck’s Distribution Law","authors":"P. Enders","doi":"10.1155/2016/9137926","DOIUrl":"https://doi.org/10.1155/2016/9137926","url":null,"abstract":"Why does Planck (1900), referring to Boltzmann’s 1877 probabilistic treatment, obtain his quantum distribution function while Boltzmann did not? To answer this question, both treatments are compared on the basis of Boltzmann’s 1868 three-level scheme (configuration—occupation—occupancy). Some calculations by Planck (1900, 1901, and 1913) and Einstein (1907) are also sketched. For obtaining a quantum distribution, it is crucial to stick with a discrete energy spectrum and to make the limit transitions to infinity at the right place. For correct state counting, the concept of interchangeability of particles is superior to that of indistinguishability.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"52 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2016-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88305685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two different methods for deriving the density and isobaric heat capacity of liquids in the subcritical pressure range, from the speed of sound, are recommended. In each method, corresponding set of differential equations relating these properties is solved as the initial boundary value problem (IBVP). The initial values are specified at the lowest pressure of the range and the boundary values along the saturation line. In the first method, numerical integration is performed along the paths connecting the Chebyshev points of the second kind between the minimum and maximum temperature at each pressure. In the second method, numerical integration is performed along the isotherms distributed in the same way, with the temperature range being extended to the saturation line after each integration step. The methods are tested with the following substances: Ar, N2, CO2, and CH4. The results obtained for the density and isobaric heat capacity have the average absolute deviation from the reference data of 0.0005% and 0.0219%, respectively. These results served as the initial values for deriving the same properties in the transcritical pressure range up to the pressure approximately twice as large as the critical pressure. The results obtained in this pressure range have respective deviations of 0.0019% and 0.1303%.
{"title":"Density and Heat Capacity of Liquids from Speed of Sound","authors":"M. Bijedić, S. Begić","doi":"10.1155/2016/2035704","DOIUrl":"https://doi.org/10.1155/2016/2035704","url":null,"abstract":"Two different methods for deriving the density and isobaric heat capacity of liquids in the subcritical pressure range, from the speed of sound, are recommended. In each method, corresponding set of differential equations relating these properties is solved as the initial boundary value problem (IBVP). The initial values are specified at the lowest pressure of the range and the boundary values along the saturation line. In the first method, numerical integration is performed along the paths connecting the Chebyshev points of the second kind between the minimum and maximum temperature at each pressure. In the second method, numerical integration is performed along the isotherms distributed in the same way, with the temperature range being extended to the saturation line after each integration step. The methods are tested with the following substances: Ar, N2, CO2, and CH4. The results obtained for the density and isobaric heat capacity have the average absolute deviation from the reference data of 0.0005% and 0.0219%, respectively. These results served as the initial values for deriving the same properties in the transcritical pressure range up to the pressure approximately twice as large as the critical pressure. The results obtained in this pressure range have respective deviations of 0.0019% and 0.1303%.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"53 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88102957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effluent from milk processing unit contains soluble organics, suspended solids, and trace organics releasing gases, causing taste and odor, and imparting colour and turbidity produced as a result of high consumption of water from the manufacturing process, utilities and service section, chemicals, and residues of technological additives used in individual operations which makes it crucial matter to be treated for preserving the aesthetics of the environment. In this experimental study after determination of the initial parameters of the raw wastewater it was subjected to batch adsorption study using rice husk. The effects of contact time, initial wastewater concentration, pH, adsorbent dosage, solution temperature and the adsorption kinetics, isotherm, and thermodynamic parameters were investigated. The phenomenon of adsorption was favoured at a lower temperature and lower pH in this case. Maximum removal as high as 92.5% could be achieved using an adsorbent dosage of 5 g/L, pH of 2, and temperature of 30°C. The adsorption kinetics and the isotherm studies showed that the pseudo-second-order model and the Langmuir isotherm were the best choices to describe the adsorption behavior. The thermodynamic parameters suggested that not only was the adsorption by rice husk spontaneous and exothermic in nature but also the negative entropy change indicated enthalpy driven process.
{"title":"Treatment of Wastewater from a Dairy Industry Using Rice Husk as Adsorbent: Treatment Efficiency, Isotherm, Thermodynamics, and Kinetics Modelling","authors":"U. Pathak, P. Das, P. K. Banerjee, S. Datta","doi":"10.1155/2016/3746316","DOIUrl":"https://doi.org/10.1155/2016/3746316","url":null,"abstract":"Effluent from milk processing unit contains soluble organics, suspended solids, and trace organics releasing gases, causing taste and odor, and imparting colour and turbidity produced as a result of high consumption of water from the manufacturing process, utilities and service section, chemicals, and residues of technological additives used in individual operations which makes it crucial matter to be treated for preserving the aesthetics of the environment. In this experimental study after determination of the initial parameters of the raw wastewater it was subjected to batch adsorption study using rice husk. The effects of contact time, initial wastewater concentration, pH, adsorbent dosage, solution temperature and the adsorption kinetics, isotherm, and thermodynamic parameters were investigated. The phenomenon of adsorption was favoured at a lower temperature and lower pH in this case. Maximum removal as high as 92.5% could be achieved using an adsorbent dosage of 5 g/L, pH of 2, and temperature of 30°C. The adsorption kinetics and the isotherm studies showed that the pseudo-second-order model and the Langmuir isotherm were the best choices to describe the adsorption behavior. The thermodynamic parameters suggested that not only was the adsorption by rice husk spontaneous and exothermic in nature but also the negative entropy change indicated enthalpy driven process.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79946139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}