{"title":"Numerical modelling of welded T-joint configurations using SYSWELD","authors":"H.M.E. Ramos, S.M.O. Tavares, P.M.S.T. de Castro","doi":"10.1016/j.stmat.2018.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Advances in computational tools for welding process simulation have been noteworthy, allowing to assess complex phenomena, as is the case of welding distortion and residual stress. The most advanced tools take into account the thermo-metallurgical and thermo-mechanical changes that take place during the welding processes. Considering these changes and the materials properties at the different temperature values, it is possible to obtain reliable models of the welding processes. In this communication, T-joint welded configurations are investigated, considering arc welding<span> and laser beam welding<span> processes. For this purpose, the commercial software ESI SYSWELD was adopted, since it is one of the most advanced tools for this purpose. These models are based on finite elements; therefore, a mesh<span> sensitivity analysis was performed in order to evaluate the minimum element size required for accurate results. In arc welded double side T-joint, different procedures were explored in order to understand the influence in the residual stress; the second pass does not increase the maximum residual stress, however it increases the area with tensile residual stress. Results for a T-joint between a steel tube and a steel plate using laser beam welding (LBW) and arc welding were obtained. The laser beam welds presented a significant reduction of the heated affected zone and, consequently, the tensile residual stresses are confined to a smaller area.</span></span></span></p></div>","PeriodicalId":101145,"journal":{"name":"Science and Technology of Materials","volume":"30 ","pages":"Pages 6-15"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stmat.2018.08.002","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2603636318300538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Advances in computational tools for welding process simulation have been noteworthy, allowing to assess complex phenomena, as is the case of welding distortion and residual stress. The most advanced tools take into account the thermo-metallurgical and thermo-mechanical changes that take place during the welding processes. Considering these changes and the materials properties at the different temperature values, it is possible to obtain reliable models of the welding processes. In this communication, T-joint welded configurations are investigated, considering arc welding and laser beam welding processes. For this purpose, the commercial software ESI SYSWELD was adopted, since it is one of the most advanced tools for this purpose. These models are based on finite elements; therefore, a mesh sensitivity analysis was performed in order to evaluate the minimum element size required for accurate results. In arc welded double side T-joint, different procedures were explored in order to understand the influence in the residual stress; the second pass does not increase the maximum residual stress, however it increases the area with tensile residual stress. Results for a T-joint between a steel tube and a steel plate using laser beam welding (LBW) and arc welding were obtained. The laser beam welds presented a significant reduction of the heated affected zone and, consequently, the tensile residual stresses are confined to a smaller area.