A global synthetic analysis of the effects of reclaimed water irrigation on crop yield and water use efficiency

IF 4.3 Q2 Environmental Science Journal of Water Supply Research and Technology-aqua Pub Date : 2023-07-11 DOI:10.2166/ws.2023.168
Zhenjie Qiu, Mengying Sun
{"title":"A global synthetic analysis of the effects of reclaimed water irrigation on crop yield and water use efficiency","authors":"Zhenjie Qiu, Mengying Sun","doi":"10.2166/ws.2023.168","DOIUrl":null,"url":null,"abstract":"\n \n To quantitatively evaluate the effect of RW irrigation on yield, WUE, and IWUE, and identify aqueous, edaphic, and management factors that favor improved yield, WUE, and IWUE compared to control practices, a meta-analysis was conducted. The results indicated that RW irrigation is beneficial for improving crop yields, WUE, and IWUE (16.8, 23.8, and 18.7%, respectively). However, its effectiveness is highly dependent on the aqueous, edaphic, and management factors of the studies evaluated. Greater responses were found in practices using RW with a pH < 7 or a nitrogen content <100 mg/L. The soils with a pH ≥ 7, electrical conductivity between 2 and 4 dS/m, bulk density <1.35 g/cm3, and/or initial nitrogen content between 200 and 2,000 mg/kg produced the highest effect size. Furthermore, using a surface drip irrigation system, with a nitrogen fertilizer rate <1,000 kg/ha and irrigation level at 100% crop evapotranspiration are effective ways to use RW. Our findings highlight the potential of RW irrigation to improve crop yield, WUE, and IWUE and identify the conditions under which these results can be achieved. These results can provide a better understanding of RW irrigation and guide the practice of RW utilization in the future.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

To quantitatively evaluate the effect of RW irrigation on yield, WUE, and IWUE, and identify aqueous, edaphic, and management factors that favor improved yield, WUE, and IWUE compared to control practices, a meta-analysis was conducted. The results indicated that RW irrigation is beneficial for improving crop yields, WUE, and IWUE (16.8, 23.8, and 18.7%, respectively). However, its effectiveness is highly dependent on the aqueous, edaphic, and management factors of the studies evaluated. Greater responses were found in practices using RW with a pH < 7 or a nitrogen content <100 mg/L. The soils with a pH ≥ 7, electrical conductivity between 2 and 4 dS/m, bulk density <1.35 g/cm3, and/or initial nitrogen content between 200 and 2,000 mg/kg produced the highest effect size. Furthermore, using a surface drip irrigation system, with a nitrogen fertilizer rate <1,000 kg/ha and irrigation level at 100% crop evapotranspiration are effective ways to use RW. Our findings highlight the potential of RW irrigation to improve crop yield, WUE, and IWUE and identify the conditions under which these results can be achieved. These results can provide a better understanding of RW irrigation and guide the practice of RW utilization in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再生水灌溉对作物产量和水分利用效率影响的全球综合分析
为了定量评估RW灌溉对产量、水分利用效率和IWUE的影响,并确定与控制措施相比有利于提高产量、水分利用效率和IWUE的水、土壤和管理因素,进行了荟萃分析。结果表明,RW灌溉有利于提高作物产量、水分利用效率和IWUE(分别为16.8%、23.8%和18.7%)。然而,其有效性在很大程度上取决于所评估研究的水、土壤和管理因素。在使用pH < 7或氮含量<100 mg/L的RW的实践中,发现响应更大。pH≥7、电导率在2 ~ 4 dS/m之间、容重<1.35 g/cm3、初始氮含量在200 ~ 2000 mg/kg之间的土壤产生的效应最大。此外,采用地表滴灌系统,施氮量<1,000 kg/ha,灌溉水平为作物蒸散量的100%,是有效利用水分的方法。我们的研究结果强调了RW灌溉在提高作物产量、WUE和IWUE方面的潜力,并确定了实现这些结果的条件。研究结果可为进一步认识水肥灌溉,指导今后水肥利用的实践提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
74
审稿时长
4.5 months
期刊介绍: Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.
期刊最新文献
Incorporating economy and water demand rate uncertainty into decision-making for agricultural water allocation during droughts Development of water resources protection planning and environmental design in urban water conservancy landscape based on ecological concept Application of water resource economic management model in agricultural structure adjustment A synoptic assessment of groundwater quality in high water-demand regions of coastal Andhra Pradesh, India Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1