Growth of Columnar Co 3 Pt Strucrure with Ru Buffer Layer at Room Temperature

A. Sun
{"title":"Growth of Columnar Co 3 Pt Strucrure with Ru Buffer Layer at Room Temperature","authors":"A. Sun","doi":"10.4172/2169-0022.1000436","DOIUrl":null,"url":null,"abstract":"Magnetic Co3Pt films were sputtered on a Ru(0002)/Pt(111) bilayer on glass substrate at room temperature. The effects of a Ru buffer layer thickness (t nm) on magnetic properties and microstructures were studied. AFM surface roughness results revealed that the root mean square roughness (Rrms) of the Ru/Pt bilayer surface is smaller than 1.5 nm. Granular Ru topography was observed as t is larger than 7 nm, which played an important role in influencing the magnetic properties and microstructures of Co3Pt thin film. In this study, Ru(0002) grew along the Pt(111) underlayer and then became a template for epitaxially growing Co3Pt(0002) film, in order to enhance the perpendicular magnetic anisotropy (PMA). Maximum Hc were obtained as t=15, due to the columnar structure formed in the whole Co3Pt/Ru/ Pt film. It demonstrates that a Ru buffer layer is helpful to enhance the PMA of Co3Pt magnetic thin film and increase out-of-plane squareness (S⊥) and Hc.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"256 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic Co3Pt films were sputtered on a Ru(0002)/Pt(111) bilayer on glass substrate at room temperature. The effects of a Ru buffer layer thickness (t nm) on magnetic properties and microstructures were studied. AFM surface roughness results revealed that the root mean square roughness (Rrms) of the Ru/Pt bilayer surface is smaller than 1.5 nm. Granular Ru topography was observed as t is larger than 7 nm, which played an important role in influencing the magnetic properties and microstructures of Co3Pt thin film. In this study, Ru(0002) grew along the Pt(111) underlayer and then became a template for epitaxially growing Co3Pt(0002) film, in order to enhance the perpendicular magnetic anisotropy (PMA). Maximum Hc were obtained as t=15, due to the columnar structure formed in the whole Co3Pt/Ru/ Pt film. It demonstrates that a Ru buffer layer is helpful to enhance the PMA of Co3Pt magnetic thin film and increase out-of-plane squareness (S⊥) and Hc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含Ru缓冲层的柱状co3pt结构的室温生长
在室温下,在玻璃基板上的Ru(0002)/Pt(111)双分子层上溅射磁性Co3Pt薄膜。研究了Ru缓冲层厚度(t nm)对磁性能和显微组织的影响。AFM表面粗糙度结果表明,Ru/Pt双层表面的均方根粗糙度(Rrms)小于1.5 nm。在t大于7 nm时观察到Ru的颗粒状形貌,这对Co3Pt薄膜的磁性能和微观结构有重要影响。在本研究中,Ru(0002)沿着Pt(111)底层生长,然后成为外延生长Co3Pt(0002)薄膜的模板,以增强垂直磁各向异性(PMA)。由于整个Co3Pt/Ru/ Pt薄膜形成柱状结构,在t=15时Hc达到最大值。研究表明,Ru缓冲层有助于提高Co3Pt磁性薄膜的PMA,并增加面外方正度(S⊥)和Hc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elements of Antigen Introducing Cells can be Adjusted by GoldNanoparticles Presentation: A Review Article Editorial Note for Journal of Material Sciences and Engineering Market Analysis on Biomaterials, Cellular and Tissue Engineering Good Governance in Oromia: Challenges and Strategies (Major Cities in Arsi and East Shewa zone in focus, Ethiopia) Pico/Nano/Micro Drop Dispensing Platform Using Unique DisposableCartridges for Non-Contact & no Cross Contamination Dispensing in LifeSciences and Industry: A Review Article
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1