{"title":"A Personalized Comprehensive Cloud-Based Method for Heterogeneous MAGDM and Application in COVID-19","authors":"Xiao-Bing Mao, Hao Wu, S. Wan","doi":"10.32604/cmes.2022.019501","DOIUrl":null,"url":null,"abstract":"This paper proposes a personalized comprehensive cloud-based method for heterogeneous multi-attribute group decision-making (MAGDM), in which the evaluations of alternatives on attributes are represented by LTs (linguistic terms), PLTSs (probabilistic linguistic term sets) and LHFSs (linguistic hesitant fuzzy sets). As an effective tool to describe LTs, cloud model is used to quantify the qualitative evaluations. Firstly, the regulation parameters of entropy and hyper entropy are defined, and they are further incorporated into the transformation process from LTs to clouds for reflecting the different personalities of decision-makers (DMs). To tackle the evaluation information in the form of PLTSs and LHFSs, PLTS and LHFS are transformed into comprehensive cloud of PLTS (C-PLTS) and comprehensive cloud of LHFS (C-LHFS), respectively. Moreover, DMs' weights are calculated based on the regulation parameters of entropy and hyper entropy. Next, we put forward cloud almost stochastic dominance (CASD) relationship and CASD degree to compare clouds. In addition, by considering three perspectives, a comprehensive tri-objective programing model is constructed to determine the attribute weights. Thereby, a personalized comprehensive cloud-based method is put forward for heterogeneous MAGDM. The validity of the proposed method is demonstrated with a site selection example of emergency medical waste disposal in COVID-19. Finally, sensitivity and comparison analyses are provided to show the effectiveness, stability, flexibility and superiorities of the proposed method.","PeriodicalId":10451,"journal":{"name":"Cmes-computer Modeling in Engineering & Sciences","volume":"293 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmes-computer Modeling in Engineering & Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32604/cmes.2022.019501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
This paper proposes a personalized comprehensive cloud-based method for heterogeneous multi-attribute group decision-making (MAGDM), in which the evaluations of alternatives on attributes are represented by LTs (linguistic terms), PLTSs (probabilistic linguistic term sets) and LHFSs (linguistic hesitant fuzzy sets). As an effective tool to describe LTs, cloud model is used to quantify the qualitative evaluations. Firstly, the regulation parameters of entropy and hyper entropy are defined, and they are further incorporated into the transformation process from LTs to clouds for reflecting the different personalities of decision-makers (DMs). To tackle the evaluation information in the form of PLTSs and LHFSs, PLTS and LHFS are transformed into comprehensive cloud of PLTS (C-PLTS) and comprehensive cloud of LHFS (C-LHFS), respectively. Moreover, DMs' weights are calculated based on the regulation parameters of entropy and hyper entropy. Next, we put forward cloud almost stochastic dominance (CASD) relationship and CASD degree to compare clouds. In addition, by considering three perspectives, a comprehensive tri-objective programing model is constructed to determine the attribute weights. Thereby, a personalized comprehensive cloud-based method is put forward for heterogeneous MAGDM. The validity of the proposed method is demonstrated with a site selection example of emergency medical waste disposal in COVID-19. Finally, sensitivity and comparison analyses are provided to show the effectiveness, stability, flexibility and superiorities of the proposed method.
期刊介绍:
This journal publishes original research papers of reasonable permanent value, in the areas of computational mechanics, computational physics, computational chemistry, and computational biology, pertinent to solids, fluids, gases, biomaterials, and other continua. Various length scales (quantum, nano, micro, meso, and macro), and various time scales ( picoseconds to hours) are of interest. Papers which deal with multi-physics problems, as well as those which deal with the interfaces of mechanics, chemistry, and biology, are particularly encouraged. New computational approaches, and more efficient algorithms, which eventually make near-real-time computations possible, are welcome. Original papers dealing with new methods such as meshless methods, and mesh-reduction methods are sought.