Multi scale Feature Extraction and Fusion for Online Knowledge Distillation

Panpan Zou, Yinglei Teng, Tao Niu
{"title":"Multi scale Feature Extraction and Fusion for Online Knowledge Distillation","authors":"Panpan Zou, Yinglei Teng, Tao Niu","doi":"10.48550/arXiv.2206.08224","DOIUrl":null,"url":null,"abstract":"Online knowledge distillation conducts knowledge transfer among all student models to alleviate the reliance on pre-trained models. However, existing online methods rely heavily on the prediction distributions and neglect the further exploration of the representational knowledge. In this paper, we propose a novel Multi-scale Feature Extraction and Fusion method (MFEF) for online knowledge distillation, which comprises three key components: Multi-scale Feature Extraction, Dual-attention and Feature Fusion, towards generating more informative feature maps for distillation. The multiscale feature extraction exploiting divide-and-concatenate in channel dimension is proposed to improve the multi-scale representation ability of feature maps. To obtain more accurate information, we design a dual-attention to strengthen the important channel and spatial regions adaptively. Moreover, we aggregate and fuse the former processed feature maps via feature fusion to assist the training of student models. Extensive experiments on CIF AR-10, CIF AR-100, and CINIC-10 show that MFEF transfers more beneficial representational knowledge for distillation and outperforms alternative methods among various network architectures","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"39 3-4 1","pages":"126-138"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.08224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Online knowledge distillation conducts knowledge transfer among all student models to alleviate the reliance on pre-trained models. However, existing online methods rely heavily on the prediction distributions and neglect the further exploration of the representational knowledge. In this paper, we propose a novel Multi-scale Feature Extraction and Fusion method (MFEF) for online knowledge distillation, which comprises three key components: Multi-scale Feature Extraction, Dual-attention and Feature Fusion, towards generating more informative feature maps for distillation. The multiscale feature extraction exploiting divide-and-concatenate in channel dimension is proposed to improve the multi-scale representation ability of feature maps. To obtain more accurate information, we design a dual-attention to strengthen the important channel and spatial regions adaptively. Moreover, we aggregate and fuse the former processed feature maps via feature fusion to assist the training of student models. Extensive experiments on CIF AR-10, CIF AR-100, and CINIC-10 show that MFEF transfers more beneficial representational knowledge for distillation and outperforms alternative methods among various network architectures
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线知识蒸馏的多尺度特征提取与融合
在线知识蒸馏在所有学生模型之间进行知识转移,以减轻对预训练模型的依赖。然而,现有的在线方法严重依赖于预测分布,忽视了对表征知识的进一步探索。本文提出了一种用于在线知识蒸馏的多尺度特征提取与融合方法(MFEF),该方法包括三个关键部分:多尺度特征提取、双关注和特征融合,以生成更多信息的特征映射用于蒸馏。为了提高特征映射的多尺度表示能力,提出了一种利用通道维度上的分拼接的多尺度特征提取方法。为了获得更准确的信息,我们设计了双关注自适应增强重要通道和空间区域。此外,我们通过特征融合对之前处理过的特征图进行聚合和融合,以辅助学生模型的训练。在CIF AR-10、CIF AR-100和CINIC-10上进行的大量实验表明,MFEF为蒸馏传递了更多有益的表征知识,并且在各种网络架构中优于其他方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Branch Network Towards Accurate Printed Mathematical Expression Recognition PE-YOLO: Pyramid Enhancement Network for Dark Object Detection Variational Autoencoders for Anomaly Detection in Respiratory Sounds Deep Feature Learning for Medical Acoustics Time Series Forecasting Models Copy the Past: How to Mitigate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1