Pub Date : 2023-07-20DOI: 10.48550/arXiv.2307.10953
Xi Yin, Zhen Yu, Zetao Fei, Wen Lv, Xinchen Gao
Current object detection models have achieved good results on many benchmark datasets, detecting objects in dark conditions remains a large challenge. To address this issue, we propose a pyramid enhanced network (PENet) and joint it with YOLOv3 to build a dark object detection framework named PE-YOLO. Firstly, PENet decomposes the image into four components of different resolutions using the Laplacian pyramid. Specifically we propose a detail processing module (DPM) to enhance the detail of images, which consists of context branch and edge branch. In addition, we propose a low-frequency enhancement filter (LEF) to capture low-frequency semantics and prevent high-frequency noise. PE-YOLO adopts an end-to-end joint training approach and only uses normal detection loss to simplify the training process. We conduct experiments on the low-light object detection dataset ExDark to demonstrate the effectiveness of ours. The results indicate that compared with other dark detectors and low-light enhancement models, PE-YOLO achieves the advanced results, achieving 78.0% in mAP and 53.6 in FPS, respectively, which can adapt to object detection under different low-light conditions. The code is available at https://github.com/XiangchenYin/PE-YOLO.
{"title":"PE-YOLO: Pyramid Enhancement Network for Dark Object Detection","authors":"Xi Yin, Zhen Yu, Zetao Fei, Wen Lv, Xinchen Gao","doi":"10.48550/arXiv.2307.10953","DOIUrl":"https://doi.org/10.48550/arXiv.2307.10953","url":null,"abstract":"Current object detection models have achieved good results on many benchmark datasets, detecting objects in dark conditions remains a large challenge. To address this issue, we propose a pyramid enhanced network (PENet) and joint it with YOLOv3 to build a dark object detection framework named PE-YOLO. Firstly, PENet decomposes the image into four components of different resolutions using the Laplacian pyramid. Specifically we propose a detail processing module (DPM) to enhance the detail of images, which consists of context branch and edge branch. In addition, we propose a low-frequency enhancement filter (LEF) to capture low-frequency semantics and prevent high-frequency noise. PE-YOLO adopts an end-to-end joint training approach and only uses normal detection loss to simplify the training process. We conduct experiments on the low-light object detection dataset ExDark to demonstrate the effectiveness of ours. The results indicate that compared with other dark detectors and low-light enhancement models, PE-YOLO achieves the advanced results, achieving 78.0% in mAP and 53.6 in FPS, respectively, which can adapt to object detection under different low-light conditions. The code is available at https://github.com/XiangchenYin/PE-YOLO.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"17 1","pages":"163-174"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84810290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05DOI: 10.48550/arXiv.2208.03326
Michele Cozzatti, Federico Simonetta, S. Ntalampiras
. This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient’s health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Im-portantly, it offers an accuracy of 57%, which is in line with the existing strongly-supervised approaches.
{"title":"Variational Autoencoders for Anomaly Detection in Respiratory Sounds","authors":"Michele Cozzatti, Federico Simonetta, S. Ntalampiras","doi":"10.48550/arXiv.2208.03326","DOIUrl":"https://doi.org/10.48550/arXiv.2208.03326","url":null,"abstract":". This paper proposes a weakly-supervised machine learning-based approach aiming at a tool to alert patients about possible respiratory diseases. Various types of pathologies may affect the respiratory system, potentially leading to severe diseases and, in certain cases, death. In general, effective prevention practices are considered as major actors towards the improvement of the patient’s health condition. The proposed method strives to realize an easily accessible tool for the automatic diagnosis of respiratory diseases. Specifically, the method leverages Variational Autoencoder architectures permitting the usage of training pipelines of limited complexity and relatively small-sized datasets. Im-portantly, it offers an accuracy of 57%, which is in line with the existing strongly-supervised approaches.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"1 1","pages":"333-345"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78652278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-05DOI: 10.48550/arXiv.2208.03084
Alessandro Poire, Federico Simonetta, S. Ntalampiras
. The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are care-fully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.
{"title":"Deep Feature Learning for Medical Acoustics","authors":"Alessandro Poire, Federico Simonetta, S. Ntalampiras","doi":"10.48550/arXiv.2208.03084","DOIUrl":"https://doi.org/10.48550/arXiv.2208.03084","url":null,"abstract":". The purpose of this paper is to compare different learnable frontends in medical acoustics tasks. A framework has been implemented to classify human respiratory sounds and heartbeats in two categories, i.e. healthy or affected by pathologies. After obtaining two suitable datasets, we proceeded to classify the sounds using two learnable state-of-art frontends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e. Mel-filterbanks. The computed features are then fed into two different CNN models, namely VGG16 and EfficientNet. The frontends are care-fully benchmarked in terms of the number of parameters, computational resources, and effectiveness. This work demonstrates how the integration of learnable frontends in neural audio classification systems may improve performance, especially in the field of medical acoustics. However, the usage of such frameworks makes the needed amount of data even larger. Consequently, they are useful if the amount of data available for training is adequately large to assist the feature learning process.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"24 1","pages":"39-50"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86354174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-27DOI: 10.48550/arXiv.2207.13441
Chrysoula Kosma, Giannis Nikolentzos, Nancy R. Xu, M. Vazirgiannis
Time series forecasting is at the core of important application domains posing significant challenges to machine learning algorithms. Recently neural network architectures have been widely applied to the problem of time series forecasting. Most of these models are trained by minimizing a loss function that measures predictions' deviation from the real values. Typical loss functions include mean squared error (MSE) and mean absolute error (MAE). In the presence of noise and uncertainty, neural network models tend to replicate the last observed value of the time series, thus limiting their applicability to real-world data. In this paper, we provide a formal definition of the above problem and we also give some examples of forecasts where the problem is observed. We also propose a regularization term penalizing the replication of previously seen values. We evaluate the proposed regularization term both on synthetic and real-world datasets. Our results indicate that the regularization term mitigates to some extent the aforementioned problem and gives rise to more robust models.
{"title":"Time Series Forecasting Models Copy the Past: How to Mitigate","authors":"Chrysoula Kosma, Giannis Nikolentzos, Nancy R. Xu, M. Vazirgiannis","doi":"10.48550/arXiv.2207.13441","DOIUrl":"https://doi.org/10.48550/arXiv.2207.13441","url":null,"abstract":"Time series forecasting is at the core of important application domains posing significant challenges to machine learning algorithms. Recently neural network architectures have been widely applied to the problem of time series forecasting. Most of these models are trained by minimizing a loss function that measures predictions' deviation from the real values. Typical loss functions include mean squared error (MSE) and mean absolute error (MAE). In the presence of noise and uncertainty, neural network models tend to replicate the last observed value of the time series, thus limiting their applicability to real-world data. In this paper, we provide a formal definition of the above problem and we also give some examples of forecasts where the problem is observed. We also propose a regularization term penalizing the replication of previously seen values. We evaluate the proposed regularization term both on synthetic and real-world datasets. Our results indicate that the regularization term mitigates to some extent the aforementioned problem and gives rise to more robust models.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"887 1","pages":"366-378"},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72577063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-21DOI: 10.48550/arXiv.2207.10334
Yuhei Noda, Shota Saito, Shinichi Shirakawa
Neural architecture search (NAS) aims to automate architecture design processes and improve the performance of deep neural networks. Platform-aware NAS methods consider both performance and complexity and can find well-performing architectures with low computational resources. Although ordinary NAS methods result in tremendous computational costs owing to the repetition of model training, one-shot NAS, which trains the weights of a supernetwork containing all candidate architectures only once during the search process, has been reported to result in a lower search cost. This study focuses on the architecture complexity-aware one-shot NAS that optimizes the objective function composed of the weighted sum of two metrics, such as the predictive performance and number of parameters. In existing methods, the architecture search process must be run multiple times with different coefficients of the weighted sum to obtain multiple architectures with different complexities. This study aims at reducing the search cost associated with finding multiple architectures. The proposed method uses multiple distributions to generate architectures with different complexities and updates each distribution using the samples obtained from multiple distributions based on importance sampling. The proposed method allows us to obtain multiple architectures with different complexities in a single architecture search, resulting in reducing the search cost. The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets. Consequently, compared with baseline methods, the proposed method finds multiple architectures with varying complexities while requiring less computational effort.
{"title":"Efficient Search of Multiple Neural Architectures with Different Complexities via Importance Sampling","authors":"Yuhei Noda, Shota Saito, Shinichi Shirakawa","doi":"10.48550/arXiv.2207.10334","DOIUrl":"https://doi.org/10.48550/arXiv.2207.10334","url":null,"abstract":"Neural architecture search (NAS) aims to automate architecture design processes and improve the performance of deep neural networks. Platform-aware NAS methods consider both performance and complexity and can find well-performing architectures with low computational resources. Although ordinary NAS methods result in tremendous computational costs owing to the repetition of model training, one-shot NAS, which trains the weights of a supernetwork containing all candidate architectures only once during the search process, has been reported to result in a lower search cost. This study focuses on the architecture complexity-aware one-shot NAS that optimizes the objective function composed of the weighted sum of two metrics, such as the predictive performance and number of parameters. In existing methods, the architecture search process must be run multiple times with different coefficients of the weighted sum to obtain multiple architectures with different complexities. This study aims at reducing the search cost associated with finding multiple architectures. The proposed method uses multiple distributions to generate architectures with different complexities and updates each distribution using the samples obtained from multiple distributions based on importance sampling. The proposed method allows us to obtain multiple architectures with different complexities in a single architecture search, resulting in reducing the search cost. The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets. Consequently, compared with baseline methods, the proposed method finds multiple architectures with varying complexities while requiring less computational effort.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"100 1","pages":"607-619"},"PeriodicalIF":0.0,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89676567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-19DOI: 10.48550/arXiv.2207.09568
A. Kundu, J. JáJá
Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of"model growing"is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.
{"title":"FedNet2Net: Saving Communication and Computations in Federated Learning with Model Growing","authors":"A. Kundu, J. JáJá","doi":"10.48550/arXiv.2207.09568","DOIUrl":"https://doi.org/10.48550/arXiv.2207.09568","url":null,"abstract":"Federated learning (FL) is a recently developed area of machine learning, in which the private data of a large number of distributed clients is used to develop a global model under the coordination of a central server without explicitly exposing the data. The standard FL strategy has a number of significant bottlenecks including large communication requirements and high impact on the clients' resources. Several strategies have been described in the literature trying to address these issues. In this paper, a novel scheme based on the notion of\"model growing\"is proposed. Initially, the server deploys a small model of low complexity, which is trained to capture the data complexity during the initial set of rounds. When the performance of such a model saturates, the server switches to a larger model with the help of function-preserving transformations. The model complexity increases as more data is processed by the clients, and the overall process continues until the desired performance is achieved. Therefore, the most complex model is broadcast only at the final stage in our approach resulting in substantial reduction in communication cost and client computational requirements. The proposed approach is tested extensively on three standard benchmarks and is shown to achieve substantial reduction in communication and client computation while achieving comparable accuracy when compared to the current most effective strategies.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"51 1","pages":"236-247"},"PeriodicalIF":0.0,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85558609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-18DOI: 10.48550/arXiv.2207.08674
Yuhao Huang, Hang Dong, Jin-shan Pan, Chao Zhu, Yu Guo, Ding Liu, L. Fu, Fei Wang
The success of existing video super-resolution (VSR) algorithms stems mainly exploiting the temporal information from the neighboring frames. However, none of these methods have discussed the influence of the temporal redundancy in the patches with stationary objects and background and usually use all the information in the adjacent frames without any discrimination. In this paper, we observe that the temporal redundancy will bring adverse effect to the information propagation,which limits the performance of the most existing VSR methods. Motivated by this observation, we aim to improve existing VSR algorithms by handling the temporal redundancy patches in an optimized manner. We develop two simple yet effective plug and play methods to improve the performance of existing local and non-local propagation-based VSR algorithms on widely-used public videos. For more comprehensive evaluating the robustness and performance of existing VSR algorithms, we also collect a new dataset which contains a variety of public videos as testing set. Extensive evaluations show that the proposed methods can significantly improve the performance of existing VSR methods on the collected videos from wild scenarios while maintain their performance on existing commonly used datasets. The code is available at https://github.com/HYHsimon/Boosted-VSR.
{"title":"Boosting Video Super Resolution with Patch-Based Temporal Redundancy Optimization","authors":"Yuhao Huang, Hang Dong, Jin-shan Pan, Chao Zhu, Yu Guo, Ding Liu, L. Fu, Fei Wang","doi":"10.48550/arXiv.2207.08674","DOIUrl":"https://doi.org/10.48550/arXiv.2207.08674","url":null,"abstract":"The success of existing video super-resolution (VSR) algorithms stems mainly exploiting the temporal information from the neighboring frames. However, none of these methods have discussed the influence of the temporal redundancy in the patches with stationary objects and background and usually use all the information in the adjacent frames without any discrimination. In this paper, we observe that the temporal redundancy will bring adverse effect to the information propagation,which limits the performance of the most existing VSR methods. Motivated by this observation, we aim to improve existing VSR algorithms by handling the temporal redundancy patches in an optimized manner. We develop two simple yet effective plug and play methods to improve the performance of existing local and non-local propagation-based VSR algorithms on widely-used public videos. For more comprehensive evaluating the robustness and performance of existing VSR algorithms, we also collect a new dataset which contains a variety of public videos as testing set. Extensive evaluations show that the proposed methods can significantly improve the performance of existing VSR methods on the collected videos from wild scenarios while maintain their performance on existing commonly used datasets. The code is available at https://github.com/HYHsimon/Boosted-VSR.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"43 1","pages":"362-375"},"PeriodicalIF":0.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87996777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-15DOI: 10.1007/978-3-031-15931-2_21
Ozan Özdemir, Matthias Kerzel, C. Weber, Jae Hee Lee, S. Wermter
{"title":"Learning Flexible Translation between Robot Actions and Language Descriptions","authors":"Ozan Özdemir, Matthias Kerzel, C. Weber, Jae Hee Lee, S. Wermter","doi":"10.1007/978-3-031-15931-2_21","DOIUrl":"https://doi.org/10.1007/978-3-031-15931-2_21","url":null,"abstract":"","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"1 1","pages":"246-257"},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81003045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-11DOI: 10.48550/arXiv.2207.04656
Mengxue Du, Shasha Li, Jie Yu, Jun Ma, Bing Ji, Huijun Liu, Wuhang Lin, Zibo Yi
Document retrieval enables users to find their required documents accurately and quickly. To satisfy the requirement of retrieval efficiency, prevalent deep neural methods adopt a representation-based matching paradigm, which saves online matching time by pre-storing document representations offline. However, the above paradigm consumes vast local storage space, especially when storing the document as word-grained representations. To tackle this, we present TGTR, a Topic-Grained Text Representation-based Model for document retrieval. Following the representation-based matching paradigm, TGTR stores the document representations offline to ensure retrieval efficiency, whereas it significantly reduces the storage requirements by using novel topicgrained representations rather than traditional word-grained. Experimental results demonstrate that compared to word-grained baselines, TGTR is consistently competitive with them on TREC CAR and MS MARCO in terms of retrieval accuracy, but it requires less than 1/10 of the storage space required by them. Moreover, TGTR overwhelmingly surpasses global-grained baselines in terms of retrieval accuracy.
{"title":"Topic-Grained Text Representation-based Model for Document Retrieval","authors":"Mengxue Du, Shasha Li, Jie Yu, Jun Ma, Bing Ji, Huijun Liu, Wuhang Lin, Zibo Yi","doi":"10.48550/arXiv.2207.04656","DOIUrl":"https://doi.org/10.48550/arXiv.2207.04656","url":null,"abstract":"Document retrieval enables users to find their required documents accurately and quickly. To satisfy the requirement of retrieval efficiency, prevalent deep neural methods adopt a representation-based matching paradigm, which saves online matching time by pre-storing document representations offline. However, the above paradigm consumes vast local storage space, especially when storing the document as word-grained representations. To tackle this, we present TGTR, a Topic-Grained Text Representation-based Model for document retrieval. Following the representation-based matching paradigm, TGTR stores the document representations offline to ensure retrieval efficiency, whereas it significantly reduces the storage requirements by using novel topicgrained representations rather than traditional word-grained. Experimental results demonstrate that compared to word-grained baselines, TGTR is consistently competitive with them on TREC CAR and MS MARCO in terms of retrieval accuracy, but it requires less than 1/10 of the storage space required by them. Moreover, TGTR overwhelmingly surpasses global-grained baselines in terms of retrieval accuracy.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"81 1","pages":"776-788"},"PeriodicalIF":0.0,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79194569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}