Nitrogen cycling in coastal sediment microbial communities with seasonally variable benthic nutrient fluxes

IF 1.6 4区 环境科学与生态学 Q3 ECOLOGY Aquatic Microbial Ecology Pub Date : 2020-01-01 DOI:10.3354/ame01954
A. Marshall, A. Longmore, L. Phillips, C. Tang, H. Hayden, K. Heidelberg, P. Mele
{"title":"Nitrogen cycling in coastal sediment microbial communities with seasonally variable benthic nutrient fluxes","authors":"A. Marshall, A. Longmore, L. Phillips, C. Tang, H. Hayden, K. Heidelberg, P. Mele","doi":"10.3354/ame01954","DOIUrl":null,"url":null,"abstract":"Benthic microbial communities contribute to nitrogen (N) cycling in coastal ecosystems through taxon-specific processes such as anammox, nitrification and N-fixation and community attributed pathways such as denitrification. By measuring the total (DNA-based) and active (RNAbased) surface sediment microbial community composition and the abundance and activity profiles of key N-cycling genes in a semi-enclosed embayment — Port Phillip Bay (PPB), Australia — we show that although the total relative abundance of N-cycling taxa is comparatively lower close to estuary inputs (Hobsons Bay [HB]), the capacity for this community to perform diverse N-cycling processes is comparatively higher than in sediments isolated from inputs (Central PPB [CPPB]). In HB, seasonal structuring of the sediment microbial community occurred between spring and summer, co-occurring with decreases in the activity profiles of anammox bacteria and organic carbon content. No changes were detected in the activity profiles of nitrifiers or the community-based pathway denitrification. Although no seasonal structuring of the sediment microbial community occurred in CPPB, the activity profiles of key N-cycling genes displayed comparatively higher within-site variability. These results show that despite N-cycling taxa representing a smaller fraction of the total community composition in estuary impacted sediments (HB) these microbial communities consistently engage in N-cycling processes and that seasonal instability in the composition of this community is not reflective of changes in its capacity to cycle N through coupled nitrification−denitrification but potentially via changes within the anammox community.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"58 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01954","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Benthic microbial communities contribute to nitrogen (N) cycling in coastal ecosystems through taxon-specific processes such as anammox, nitrification and N-fixation and community attributed pathways such as denitrification. By measuring the total (DNA-based) and active (RNAbased) surface sediment microbial community composition and the abundance and activity profiles of key N-cycling genes in a semi-enclosed embayment — Port Phillip Bay (PPB), Australia — we show that although the total relative abundance of N-cycling taxa is comparatively lower close to estuary inputs (Hobsons Bay [HB]), the capacity for this community to perform diverse N-cycling processes is comparatively higher than in sediments isolated from inputs (Central PPB [CPPB]). In HB, seasonal structuring of the sediment microbial community occurred between spring and summer, co-occurring with decreases in the activity profiles of anammox bacteria and organic carbon content. No changes were detected in the activity profiles of nitrifiers or the community-based pathway denitrification. Although no seasonal structuring of the sediment microbial community occurred in CPPB, the activity profiles of key N-cycling genes displayed comparatively higher within-site variability. These results show that despite N-cycling taxa representing a smaller fraction of the total community composition in estuary impacted sediments (HB) these microbial communities consistently engage in N-cycling processes and that seasonal instability in the composition of this community is not reflective of changes in its capacity to cycle N through coupled nitrification−denitrification but potentially via changes within the anammox community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随季节变化底栖生物养分通量的海岸沉积物微生物群落氮循环
底栖微生物群落通过厌氧氨氧化、硝化作用和固氮作用等分类群特有的过程,以及反硝化作用等群落特有的途径,对沿海生态系统中的氮循环做出贡献。通过测量半封闭海湾表层沉积物总(基于dna)和活性(基于rnaba)微生物群落组成以及关键n循环基因的丰度和活性谱我们发现,尽管靠近河口输入(Hobsons Bay [HB])的n循环分类群的总相对丰度相对较低,但该群落进行各种n循环过程的能力相对高于与输入隔离的沉积物(Central PPB [CPPB])。在HB中,沉积物微生物群落的季节性结构发生在春季和夏季之间,与厌氧氨氧化菌活性谱和有机碳含量的下降共同发生。在硝化菌或社区途径反硝化的活性谱中未检测到变化。虽然CPPB沉积物微生物群落不存在季节性结构,但关键n循环基因的活性谱表现出较高的位点内变异性。这些结果表明,尽管N循环分类群在河口影响沉积物(HB)的总群落组成中所占比例较小,但这些微生物群落始终参与N循环过程,并且该群落组成的季节性不稳定性并不反映其通过耦合硝化-反硝化循环N的能力的变化,而可能通过厌氧氨氧化群落的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Microbial Ecology
Aquatic Microbial Ecology 环境科学-海洋与淡水生物学
CiteScore
3.30
自引率
0.00%
发文量
8
审稿时长
3.0 months
期刊介绍: AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with: Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.). Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity. Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.
期刊最新文献
Shore and mid-channel surveys reveal distinct phytoplankton-bacterial population associations along an urban estuary Complementary chromatic acclimation by shifts in phycobiliprotein spectral absorption in the cryptophyte Hemiselmis pacifica Near-benthic coral reef picoplankton vary at fine scales decoupled from benthic cover Salinity gradient differentiates potential novel ecotypes and diversity of Labyrinthulomycetes protists along the Haihe River, northern China Species sorting as the major driver of turnover for both planktonic and periphytic bacteria and the subgroup cyanobacteria in a subtropical lake system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1