DETECÇÃO E RECONHECIMENTO DE PLANTAS DE PEQUENO PORTE UTILIZANDO APRENDIZAGEM DE MÁQUINA

Thales Santos Verne, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero
{"title":"DETECÇÃO E RECONHECIMENTO DE PLANTAS DE PEQUENO PORTE UTILIZANDO APRENDIZAGEM DE MÁQUINA","authors":"Thales Santos Verne, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero","doi":"10.5747/ce.2022.v14.n1.e383","DOIUrl":null,"url":null,"abstract":"The detection and recognition of plants has always been a difficult task even for connoisseurs and scholars due to the wide variety of plants found worldwide. With the advancement of technology, it has become possible to solve this problem computationally. This paper presents a method to perform plant detection and recognition from images using computer vision and artificial intelligence algorithms. The results show that the computational cost and recognition rate were satisfactory for use in controlled environments. The processing time to recognize each plant was 375 milliseconds, with an accuracy of 92%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2022.v14.n1.e383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and recognition of plants has always been a difficult task even for connoisseurs and scholars due to the wide variety of plants found worldwide. With the advancement of technology, it has become possible to solve this problem computationally. This paper presents a method to perform plant detection and recognition from images using computer vision and artificial intelligence algorithms. The results show that the computational cost and recognition rate were satisfactory for use in controlled environments. The processing time to recognize each plant was 375 milliseconds, with an accuracy of 92%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习对小型工厂进行检测和识别
由于世界各地发现的植物种类繁多,即使对鉴赏家和学者来说,检测和识别植物也一直是一项艰巨的任务。随着技术的进步,通过计算来解决这个问题已经成为可能。本文提出了一种利用计算机视觉和人工智能算法从图像中进行植物检测和识别的方法。结果表明,该算法的计算成本和识别率均满足在受控环境下使用的要求。识别每种植物的处理时间为375毫秒,准确率为92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
期刊最新文献
ESTUDO DE TRÁFEGO DE VEÍCULOS, INTERVENÇÕES DE SINALIZAÇÕES E URBANISMO TÁTICO NO ENTORNO DO HOSPITAL DA VIDA COMO POLO GERADOR DE VIAGENS ENGLISHVR: USO DE REALIDADE VIRTUAL NO ENSINO DA LÍNGUA INGLESA NAS ESCOLAS DE ENSINO FUNDAMENTAL ESTADUAL BRASILEIRO ANÁLISE DE METAIS POTENCIALMENTE CONTAMINANTES NOS PEIXES DO RIO TAQUARI, BACIA DO RIO PARAGUAI, MUNICÍPIO DE COXIM-MS MODELO SEMÂNTICO DE OPERAÇÕES ARITMÉTICAS E LÓGICAS PARA HARDWARE VIRTUAL PHYSIOVR: FERRAMENTA DE REALIDADE VIRTUAL APLICADO NA REABILITAÇÃO CARDIOVASCULAR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1