Lin Xu, Huqiang Zhang, Weiwei He, Chengzhi Ye, A. Moise, José María Rodríguez
{"title":"Potential connections between atmospheric rivers in China and Australia","authors":"Lin Xu, Huqiang Zhang, Weiwei He, Chengzhi Ye, A. Moise, José María Rodríguez","doi":"10.1071/ES19027","DOIUrl":null,"url":null,"abstract":"\nResults from a collaborative project between the Australian Bureau of Meteorology and China Meteorological Administration found that atmospheric rivers (ARs) can occur simultaneously in East Asia and Australia. Furthermore, ARs and the Northwest Cloud Band in the Australia region tend to reach their peaks during austral cool season (May–August). At the same time that the Asian summer monsoon develops and its meridional moisture transport and AR activities intensify. This has prompted us to explore potential connections of ARs in the two regions. In this study, we firstly analysed two ARs and their mechanism that occurred in China and Australia in June 2016, which caused significant rainfall in both countries. We then explored the atmospheric circulation background for such AR connections. From this case study, we show that ARs originating from the tropical Indian and Pacific oceans can become bifurcated through Indo-Pacific inter-basin interactions. The position of the bifurcation appears to depend on the location and intensity of Western Pacific Subtropical High (WPSH), the subtropical high in the Australian region and the middle-latitude storm track migration in the southern hemisphere. Moreover, by analysing bifurcated AR events from the past two decades, we show that they are more likely to occur during boreal summer months. Most of the bifurcations occurred in the boreal summer following the decaying phase of an El Niño in its preceding winter, due to a delayed El Niño Southern Oscillation influence on the WPSH and a subtropical high in the Australian region. Our research further demonstrates the value of applying AR analysis in improving our understanding of the weather and climate in the Australia–Asian monsoon region.\n","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/ES19027","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Results from a collaborative project between the Australian Bureau of Meteorology and China Meteorological Administration found that atmospheric rivers (ARs) can occur simultaneously in East Asia and Australia. Furthermore, ARs and the Northwest Cloud Band in the Australia region tend to reach their peaks during austral cool season (May–August). At the same time that the Asian summer monsoon develops and its meridional moisture transport and AR activities intensify. This has prompted us to explore potential connections of ARs in the two regions. In this study, we firstly analysed two ARs and their mechanism that occurred in China and Australia in June 2016, which caused significant rainfall in both countries. We then explored the atmospheric circulation background for such AR connections. From this case study, we show that ARs originating from the tropical Indian and Pacific oceans can become bifurcated through Indo-Pacific inter-basin interactions. The position of the bifurcation appears to depend on the location and intensity of Western Pacific Subtropical High (WPSH), the subtropical high in the Australian region and the middle-latitude storm track migration in the southern hemisphere. Moreover, by analysing bifurcated AR events from the past two decades, we show that they are more likely to occur during boreal summer months. Most of the bifurcations occurred in the boreal summer following the decaying phase of an El Niño in its preceding winter, due to a delayed El Niño Southern Oscillation influence on the WPSH and a subtropical high in the Australian region. Our research further demonstrates the value of applying AR analysis in improving our understanding of the weather and climate in the Australia–Asian monsoon region.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.