首页 > 最新文献

Journal of Southern Hemisphere Earth Systems Science最新文献

英文 中文
ACCESS-S2 seasonal forecasts of rainfall and the SAM–rainfall relationship during the grain growing season in south-west Western Australia ACCESS-S2 对西澳大利亚西南部谷物生长季节的降雨量和 SAM 与降雨量之间关系的季节性预测
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-09-03 DOI: 10.1071/es24004
Rebecca Firth, Jatin Kala, Debra Hudson, Kerryn Hawke, Andrew Marshall

South-west Western Australia (SWWA) is home to a world class grains industry that is significantly affected by periods of drought. Previous research has shown a link between the Southern Annular Mode (SAM) and rainfall in SWWA, especially during winter months. Hence, the predictability of the SAM and its relationship to SWWA rainfall can potentially improve forecasts of SWWA drought, which would provide valuable information for farmers. In this paper, focusing on the 0-month lead time forecast, we assess the bias and skill of ACCESS-S2, the Australian Bureau of Meteorology’s current operational sub-seasonal to seasonal forecasting system, in simulating seasonal rainfall for SWWA during the growing season (May–October). We then analyse the relationship between the SAM and SWWA precipitation and how well this is captured in ACCESS-S2 as well as how well ACCESS-S2 forecasts the monthly SAM index. Finally, ACCESS-S2 rainfall forecasts and the simulation of SAM are assessed for a case study of extreme drought in 2010. Our results show that forecasts tend to have greater skill in the earlier part of the season (May–July). ACCESS-S2 captures the significant inverse SAM–rainfall relationship but underestimates its strength. The model also shows overall skill in forecasting the monthly SAM index and simulating the MSLP and 850-hPa wind anomaly patterns associated with positive and negative SAM phases. However, for the 2010 drought case study, ACCESS-S2 does not indicate strong likelihoods of the upcoming dry conditions, particularly for later in the growing season, despite predicting a positive (although weaker than observed) SAM index. Although ACCESS-S2 is shown to skillfully depict the SAM–SWWA rainfall relationship and generally forecast the SAM index well, the seasonal rainfall forecasts still show limited skill. Hence it is likely that model errors unrelated to the SAM are contributing to limited skill in seasonal rainfall forecasts for SWWA, as well as the generally low seasonal-timescale predictability for the region.

西澳大利亚西南部(SWWA)拥有世界一流的谷物产业,该产业受到干旱期的严重影响。先前的研究表明,南环流模式(SAM)与西澳大利亚西南部的降雨量之间存在联系,尤其是在冬季。因此,南环流模式的可预测性及其与西南地区降雨量的关系有可能改善西南地区的干旱预报,从而为农民提供有价值的信息。在本文中,我们以 0 个月提前期预报为重点,评估了澳大利亚气象局目前运行的分季节到季节预报系统 ACCESS-S2 在模拟西南地区生长季节(5 月至 10 月)季节性降雨时的偏差和技能。然后,我们分析了 SAM 与 SWWA 降水量之间的关系,以及 ACCESS-S2 对这种关系的捕捉程度和 ACCESS-S2 对每月 SAM 指数的预报程度。最后,ACCESS-S2 降水预报和 SAM 模拟在 2010 年极端干旱的案例研究中进行了评估。我们的结果表明,在季节的早期(5 月至 7 月),预测往往具有更高的技能。ACCESS-S2 模型捕捉到了 SAM 与降雨量之间的显著反比关系,但低估了这种关系的强度。该模式在预报月 SAM 指数以及模拟与正负 SAM 阶段相关的 MSLP 和 850 hPa 风异常模式方面也显示出整体技能。然而,在 2010 年干旱案例研究中,尽管 ACCESS-S2 预测了正的 SAM 指数(尽管比观测到的要弱),但并没有显示出即将出现干旱状况的强烈可能性,尤其是在生长季节的后期。尽管 ACCESS-S2 可以熟练地描绘 SAM-SWWA 降雨量关系,并对 SAM 指数进行良好的预测,但对季节性降雨量的预测仍然显示出有限的技能。因此,可能是与 SAM 无关的模式误差导致了西南地区季节性降雨预报的有限技能,以及该地区普遍较低的季节-时间尺度可预测性。
{"title":"ACCESS-S2 seasonal forecasts of rainfall and the SAM–rainfall relationship during the grain growing season in south-west Western Australia","authors":"Rebecca Firth, Jatin Kala, Debra Hudson, Kerryn Hawke, Andrew Marshall","doi":"10.1071/es24004","DOIUrl":"https://doi.org/10.1071/es24004","url":null,"abstract":"<p>South-west Western Australia (SWWA) is home to a world class grains industry that is significantly affected by periods of drought. Previous research has shown a link between the Southern Annular Mode (SAM) and rainfall in SWWA, especially during winter months. Hence, the predictability of the SAM and its relationship to SWWA rainfall can potentially improve forecasts of SWWA drought, which would provide valuable information for farmers. In this paper, focusing on the 0-month lead time forecast, we assess the bias and skill of ACCESS-S2, the Australian Bureau of Meteorology’s current operational sub-seasonal to seasonal forecasting system, in simulating seasonal rainfall for SWWA during the growing season (May–October). We then analyse the relationship between the SAM and SWWA precipitation and how well this is captured in ACCESS-S2 as well as how well ACCESS-S2 forecasts the monthly SAM index. Finally, ACCESS-S2 rainfall forecasts and the simulation of SAM are assessed for a case study of extreme drought in 2010. Our results show that forecasts tend to have greater skill in the earlier part of the season (May–July). ACCESS-S2 captures the significant inverse SAM–rainfall relationship but underestimates its strength. The model also shows overall skill in forecasting the monthly SAM index and simulating the MSLP and 850-hPa wind anomaly patterns associated with positive and negative SAM phases. However, for the 2010 drought case study, ACCESS-S2 does not indicate strong likelihoods of the upcoming dry conditions, particularly for later in the growing season, despite predicting a positive (although weaker than observed) SAM index. Although ACCESS-S2 is shown to skillfully depict the SAM–SWWA rainfall relationship and generally forecast the SAM index well, the seasonal rainfall forecasts still show limited skill. Hence it is likely that model errors unrelated to the SAM are contributing to limited skill in seasonal rainfall forecasts for SWWA, as well as the generally low seasonal-timescale predictability for the region.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"52 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions 新的 UM 对流方案 CoMorph-A 对印度洋-太平洋和澳大利亚地区的影响
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-09-02 DOI: 10.1071/es23011
Hongyan Zhu, Debra Hudson, Chen Li, Li Shi, Bethan White, Griffith Young, Alison Stirling, Michael Whitall, Adrian Lock, Sally Lavender, Rachel Stratton

A new convection scheme, ‘CoMorph-A’, has been introduced into the latest UK Met Office coupled (GC4) and atmosphere-only (GA8) models. In this study, the impact of CoMorph-A is assessed in atmosphere-only Atmospheric Model Intercomparison Project simulations, as well as in sets of initialised 28-day forecasts with both the coupled and uncoupled models. Initial results show improvements over the Indo-Pacific and northern Australian regions, as well as improvements in the rainfall bias, Madden–Julian Oscillation simulation and prediction, tropical cyclone forecasts and the diurnal cycle of rainfall over the Maritime Continent. The improvements are mostly consistent across the initialised forecasts and the climate simulations, indicating the effectiveness of the new scheme across applications. The use of this new convection scheme is promising for future model configurations, and for improving the simulation and prediction of Australian weather and climate. The UK Met Office is continuing to develop CoMorph and will soon release version B.

英国气象局最新的耦合模式(GC4)和纯大气模式(GA8)引入了一种新的对流方案 "CoMorph-A"。在这项研究中,CoMorph-A 的影响被评估在纯大气模型相互比较项目模拟中,以及在耦合和非耦合模型的 28 天初始化预报中。初步结果显示,印度洋-太平洋和澳大利亚北部地区的预报有所改善,降雨偏差、马德登-朱利安涛动的模拟和预测、热带气旋预报和海洋大陆降雨的昼夜周期也有所改善。这些改进在初始化预报和气候模拟中基本一致,表明新方案在各种应用中都很有效。这种新对流方案的使用对未来的模型配置以及改进澳大利亚天气和气候的模拟和预测很有希望。英国气象局正在继续开发 CoMorph,不久将发布 B 版。
{"title":"Impacts of the new UM convection scheme, CoMorph-A, over the Indo-Pacific and Australian regions","authors":"Hongyan Zhu, Debra Hudson, Chen Li, Li Shi, Bethan White, Griffith Young, Alison Stirling, Michael Whitall, Adrian Lock, Sally Lavender, Rachel Stratton","doi":"10.1071/es23011","DOIUrl":"https://doi.org/10.1071/es23011","url":null,"abstract":"<p>A new convection scheme, ‘CoMorph-A’, has been introduced into the latest UK Met Office coupled (GC4) and atmosphere-only (GA8) models. In this study, the impact of CoMorph-A is assessed in atmosphere-only Atmospheric Model Intercomparison Project simulations, as well as in sets of initialised 28-day forecasts with both the coupled and uncoupled models. Initial results show improvements over the Indo-Pacific and northern Australian regions, as well as improvements in the rainfall bias, Madden–Julian Oscillation simulation and prediction, tropical cyclone forecasts and the diurnal cycle of rainfall over the Maritime Continent. The improvements are mostly consistent across the initialised forecasts and the climate simulations, indicating the effectiveness of the new scheme across applications. The use of this new convection scheme is promising for future model configurations, and for improving the simulation and prediction of Australian weather and climate. The UK Met Office is continuing to develop CoMorph and will soon release version B.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"62 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of topography on the local circulation and formation of fog at Perth Airport 地形对珀斯机场局部环流和雾形成的影响
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-24 DOI: 10.1071/es23025
Belinda Roux, Rodney Potts, Steven Siems, Michael Manton

Perth Airport is located on a coastal plain in the south-west of Australia, with the Indian Ocean to the west and the Darling Scarp running approximately parallel to the coast to the east. On average, there are approximately nine fog events per year at the airport, typically occurring during the cooler months in the early morning hours. Onshore winds bringing moisture from the Indian Ocean can combine with nocturnal cooling in stable atmospheres to encourage fog formation. A previous climatological study of fog at Perth Airport found that the majority of events had north to north-easterly 10-m winds at fog onset time. Two case studies are presented to gain a better understanding of the physical processes associated with the north to north-easterly near-surface flow and their influence on the development of fog. The hypothesis is that the escarpment is blocking the moist environmental flow, resulting in light northerly near-surface winds. This was tested through numerical experiments including altered terrain. The main finding from the case studies was that the northerly winds stem from a blocking of the airmass in the lower level of the atmosphere by the Darling Scarp in moderate wind situations. During calm or very light wind occasions, the winds below the surface inversion level can tend northerly regardless of topography. The trapped airmass and light winds in the near surface layer in combination with nocturnal surface cooling and moisture from the environmental flow, create conditions favourable for the development of fog at Perth Airport.

珀斯机场位于澳大利亚西南部的沿海平原上,西临印度洋,东面是与海岸线大致平行的达令悬崖。平均而言,机场每年大约会出现九次大雾,通常发生在较为凉爽的月份的清晨时分。从印度洋带来湿气的沿岸风与稳定大气中的夜间降温相结合,会促进雾的形成。之前对珀斯机场大雾进行的气候学研究发现,大多数情况下,大雾发生时都会刮起10米的北风至东北风。本文介绍了两个案例研究,以更好地了解与北至东北近地表流相关的物理过程及其对雾形成的影响。假设是悬崖阻挡了潮湿的环境流,导致轻微的北向近地表风。通过包括改变地形在内的数值实验对这一假设进行了检验。案例研究的主要发现是,在中等风力情况下,北风是由于达令悬崖阻挡了大气低层的气团。在风平浪静或风力很弱的情况下,地表反转层以下的风可以不受地形影响而偏向北方。近地表层的滞留气团和轻风,加上夜间的地表降温和环境流带来的湿气,为珀斯机场雾的形成创造了有利条件。
{"title":"The role of topography on the local circulation and formation of fog at Perth Airport","authors":"Belinda Roux, Rodney Potts, Steven Siems, Michael Manton","doi":"10.1071/es23025","DOIUrl":"https://doi.org/10.1071/es23025","url":null,"abstract":"<p>Perth Airport is located on a coastal plain in the south-west of Australia, with the Indian Ocean to the west and the Darling Scarp running approximately parallel to the coast to the east. On average, there are approximately nine fog events per year at the airport, typically occurring during the cooler months in the early morning hours. Onshore winds bringing moisture from the Indian Ocean can combine with nocturnal cooling in stable atmospheres to encourage fog formation. A previous climatological study of fog at Perth Airport found that the majority of events had north to north-easterly 10-m winds at fog onset time. Two case studies are presented to gain a better understanding of the physical processes associated with the north to north-easterly near-surface flow and their influence on the development of fog. The hypothesis is that the escarpment is blocking the moist environmental flow, resulting in light northerly near-surface winds. This was tested through numerical experiments including altered terrain. The main finding from the case studies was that the northerly winds stem from a blocking of the airmass in the lower level of the atmosphere by the Darling Scarp in moderate wind situations. During calm or very light wind occasions, the winds below the surface inversion level can tend northerly regardless of topography. The trapped airmass and light winds in the near surface layer in combination with nocturnal surface cooling and moisture from the environmental flow, create conditions favourable for the development of fog at Perth Airport.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"7 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Merging weather radar and rain gauges for dryland agriculture 为旱地农业合并天气雷达和雨量计
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-20 DOI: 10.1071/es23023
Peter Weir, Peter Dahlhaus

The areal extent of rainfall remains one of the most challenging meteorological variables to model accurately due to its high spatial and temporal variability. Weather radar is a remote sensing instrument that is increasingly used to estimate rainfall by providing unique observations of precipitation events at fine spatial and temporal resolutions, which are difficult to obtain using conventional rain gauge networks. Dense rain gauge networks combined with operational weather radars are widely considered as the most reliable source of rainfall depth estimates. This paper compares the various sources of rainfall data available and explores the benefits of merging radar data with rain gauge data by reviewing the outcomes of a case study of a major agricultural cropping and pasture region. Comparison is made of rainfall measurements obtained from a dense rain gauge network covered by the output from a weather radar installation. We conclude that merging radar data with rain gauge data provides improved resolution of the spatial variability of rainfall, resulting in a significantly improved data source for agricultural water management and hydrological modelling. However, the use of weather radar merged with rain gauge data is generally underrated as a management tool.

由于降雨在空间和时间上的高度可变性,降雨的区域范围仍然是最难精确建模的气象变量之一。气象雷达是一种遥感仪器,通过对降水事件提供独特的精细时空分辨率观测,越来越多地用于估算降雨量,而传统的雨量计网络很难获得这种观测数据。密集的雨量计网络与实用气象雷达相结合,被广泛认为是估算降雨深度的最可靠来源。本文比较了现有的各种降雨量数据来源,并通过回顾一个主要农业种植和牧场地区的案例研究结果,探讨了将雷达数据与雨量计数据合并的好处。我们比较了从一个密集的雨量计网络获得的雨量测量数据和从一个气象雷达装置获得的数据。我们的结论是,将雷达数据与雨量计数据合并可提高降雨空间变化的分辨率,从而大大改进农业用水管理和水文建模的数据来源。然而,人们普遍低估了气象雷达与雨量计数据合并后作为管理工具的作用。
{"title":"Merging weather radar and rain gauges for dryland agriculture","authors":"Peter Weir, Peter Dahlhaus","doi":"10.1071/es23023","DOIUrl":"https://doi.org/10.1071/es23023","url":null,"abstract":"<p>The areal extent of rainfall remains one of the most challenging meteorological variables to model accurately due to its high spatial and temporal variability. Weather radar is a remote sensing instrument that is increasingly used to estimate rainfall by providing unique observations of precipitation events at fine spatial and temporal resolutions, which are difficult to obtain using conventional rain gauge networks. Dense rain gauge networks combined with operational weather radars are widely considered as the most reliable source of rainfall depth estimates. This paper compares the various sources of rainfall data available and explores the benefits of merging radar data with rain gauge data by reviewing the outcomes of a case study of a major agricultural cropping and pasture region. Comparison is made of rainfall measurements obtained from a dense rain gauge network covered by the output from a weather radar installation. We conclude that merging radar data with rain gauge data provides improved resolution of the spatial variability of rainfall, resulting in a significantly improved data source for agricultural water management and hydrological modelling. However, the use of weather radar merged with rain gauge data is generally underrated as a management tool.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global ocean surface and subsurface temperature forecast skill over subseasonal to seasonal timescales 亚季节到季节时间尺度上的全球海洋表面和次表层温度预报技能
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-05-01 DOI: 10.1071/es23020
Grant A. Smith, Claire M. Spillman

Subseasonal to seasonal forecasts of ocean temperatures, including extreme events such as marine heatwaves, have demonstrated utility in informing operational decision-making by marine end users and managing climate risk. Verification is critical for effective communication and uptake of forecast information, together with understanding ocean temperature predictability. The forecast skill of surface and subsurface ocean temperature forecasts from the Bureau of Meteorology’s new ACCESS-S2 seasonal prediction system are assessed here over an extended 38-year hindcast period, from 2 weeks to 6 months into the future. Forecasts of sea surface temperature (SST), heat content down to 300 m (HC300), bottom temperatures on continental shelves, and mixed layer depth are compared to both satellite observations and ocean reanalyses for the globe and the Australian region, using a variety of skill metrics. ACCESS-S2 demonstrates increased SST skill over its predecessor ACCESS-S1 at subseasonal timescales for all variables assessed. Heat content skill is particularly high in the tropics but reduced in subtropical regions especially when compared to persistence. Forecast skill for ocean temperature is higher in the austral summer months than winter at lead times up to 2 months in the Western Pacific region. Mixed layer depth is poorly predicted at all lead times, with only limited areas of skill around Australia and in the south-west Pacific region. Probability of exceedance forecasts for the 90th percentile as an indicator for marine heatwave conditions, shows adequate skill for SST, HC300 and bottom temperatures, especially near shelf regions at shorter lead times. This work will underpin the future development of an operational marine heatwave forecast service, which will provide early warning of these events and thus valuable preparation windows for marine stakeholders.

对海洋温度(包括海洋热浪等极端事件)的分季节到季节性预报,在为海洋终端用户的业务决策提供信息和管理气候风险方面已显示出效用。验证对于有效传播和吸收预报信息以及了解海洋温度的可预测性至关重要。本文评估了气象局新的 ACCESS-S2 季节性预报系统对表层和次表层海洋温度预报的预报技能,时间跨度为 38 年,从 2 周到未来 6 个月不等。利用各种技能指标,将海面温度(SST)、300 米以下热含量(HC300)、大陆架底层温度和混合层深度的预测与卫星观测数据和全球及澳大利亚地区的海洋再分析数据进行了比较。就所有评估变量而言,ACCESS-S2 在亚季节时间尺度上都比其前身 ACCESS-S1 显示出更高的 SST 技能。热带地区的热含量预报技能特别高,但亚热带地区则有所降低,尤其是与持续性相比。在西太平洋地区,海洋温度的预报技能在澳大利夏季比冬季高,预报时间长达 2 个月。混合层深度在所有预报时间内的预报能力都较差,只有澳大利亚周围和西南太平洋地区的预报能力较强。作为海洋热浪条件的指标,第 90 百分位数的超标概率预测显示出对 SST、HC300 和底层温度有足够的预测能力,尤其是在较短预报时间的陆架附近地区。这项工作将为今后开发海洋热浪业务预报服务提供支持,该服务将提供这些事件的早期预警,从而为海洋利益相关者提供宝贵的准备时间。
{"title":"Global ocean surface and subsurface temperature forecast skill over subseasonal to seasonal timescales","authors":"Grant A. Smith, Claire M. Spillman","doi":"10.1071/es23020","DOIUrl":"https://doi.org/10.1071/es23020","url":null,"abstract":"<p>Subseasonal to seasonal forecasts of ocean temperatures, including extreme events such as marine heatwaves, have demonstrated utility in informing operational decision-making by marine end users and managing climate risk. Verification is critical for effective communication and uptake of forecast information, together with understanding ocean temperature predictability. The forecast skill of surface and subsurface ocean temperature forecasts from the Bureau of Meteorology’s new ACCESS-S2 seasonal prediction system are assessed here over an extended 38-year hindcast period, from 2 weeks to 6 months into the future. Forecasts of sea surface temperature (SST), heat content down to 300 m (HC300), bottom temperatures on continental shelves, and mixed layer depth are compared to both satellite observations and ocean reanalyses for the globe and the Australian region, using a variety of skill metrics. ACCESS-S2 demonstrates increased SST skill over its predecessor ACCESS-S1 at subseasonal timescales for all variables assessed. Heat content skill is particularly high in the tropics but reduced in subtropical regions especially when compared to persistence. Forecast skill for ocean temperature is higher in the austral summer months than winter at lead times up to 2 months in the Western Pacific region. Mixed layer depth is poorly predicted at all lead times, with only limited areas of skill around Australia and in the south-west Pacific region. Probability of exceedance forecasts for the 90th percentile as an indicator for marine heatwave conditions, shows adequate skill for SST, HC300 and bottom temperatures, especially near shelf regions at shorter lead times. This work will underpin the future development of an operational marine heatwave forecast service, which will provide early warning of these events and thus valuable preparation windows for marine stakeholders.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"266 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bulk cloud microphysical properties as seen from numerical simulation and remote sensing products: case study of a hailstorm event over the La Plata Basin 从数值模拟和遥感产品看云团微物理特性:拉普拉塔盆地冰雹事件案例研究
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-05-01 DOI: 10.1071/es23006
Angel Liduvino Vara-Vela, Natália Machado Crespo, Éder Paulo Vendrasco, Noelia Rojas Benavente, Marcos Vinicius Bueno de Morais, Jorge Alberto Martins, Vaughan Trevor James Phillips, Fabio Luiz Teixeira Gonçalves, Maria Assunção Faus da Silva Dias

Hailstorms develop over the La Plata Basin, in south-eastern South America, more often during later winter and early austral spring, between September and October. These systems have significant socioeconomic impacts over the region. Thus, a better understanding of how atmospheric drivers modulate the formation of hailstorms is important to improve the forecast of such phenomena. In this study, we selected a hailstorm event observed over the eastern La Plata Basin during 14–15 July 2016 to evaluate the performance of the Brazilian developments on the Regional Atmospheric Modelling System (BRAMS) model. The ability of the model in simulating cloud microphysical properties was evaluated by comparing simulations driven by different global forcings against in situ and remote sensing observations. The model results showed good skill in capturing the basic characteristics of the thunderstorm, particularly in terms of the spatial distribution of hydrometeors. The simulated spatial distribution of hail covers locations where hail fall was reported. The BRAMS simulations suggest that, despite relatively low values of the convective available potential energy (CAPE) (700–1000 J kg−1), environments with strong 0–8-km bulk shear (60–70 kt, ~30.9–36.0 m s–1) can promote the formation of ice clouds and hail fall over the eastern La Plata Basin. To be more conclusive, however, further research is needed to understand how different combinations of CAPE and shear affect hail formation over the region.

南美洲东南部拉普拉塔盆地上空的冰雹多发生在 9 月至 10 月间的冬末和早春季节。这些系统对该地区的社会经济产生了重大影响。因此,更好地了解大气驱动因素如何调节冰雹的形成,对于改善此类现象的预报非常重要。在本研究中,我们选择了 2016 年 7 月 14-15 日在拉普拉塔盆地东部观测到的一次冰雹事件,以评估巴西开发的区域大气模拟系统(BRAMS)模型的性能。通过将不同全球作用力驱动的模拟结果与现场和遥感观测结果进行比较,评估了模型模拟云微物理特性的能力。模型结果表明,该模型在捕捉雷暴的基本特征,尤其是水文介质的空间分布方面表现出色。模拟的冰雹空间分布覆盖了有冰雹坠落报道的地点。BRAMS 模拟结果表明,尽管对流可用势能 (CAPE) 值相对较低(700-1000 焦耳/千克-1),但在拉普拉塔盆地东部,0-8 千米范围内的强体积切变(60-70 千米/秒,约 30.9-36.0 米-1)会促进冰云的形成和冰雹的降下。不过,要得出更确切的结论,还需要进一步研究,以了解 CAPE 和切变的不同组合如何影响该地区冰雹的形成。
{"title":"Bulk cloud microphysical properties as seen from numerical simulation and remote sensing products: case study of a hailstorm event over the La Plata Basin","authors":"Angel Liduvino Vara-Vela, Natália Machado Crespo, Éder Paulo Vendrasco, Noelia Rojas Benavente, Marcos Vinicius Bueno de Morais, Jorge Alberto Martins, Vaughan Trevor James Phillips, Fabio Luiz Teixeira Gonçalves, Maria Assunção Faus da Silva Dias","doi":"10.1071/es23006","DOIUrl":"https://doi.org/10.1071/es23006","url":null,"abstract":"<p>Hailstorms develop over the La Plata Basin, in south-eastern South America, more often during later winter and early austral spring, between September and October. These systems have significant socioeconomic impacts over the region. Thus, a better understanding of how atmospheric drivers modulate the formation of hailstorms is important to improve the forecast of such phenomena. In this study, we selected a hailstorm event observed over the eastern La Plata Basin during 14–15 July 2016 to evaluate the performance of the Brazilian developments on the Regional Atmospheric Modelling System (BRAMS) model. The ability of the model in simulating cloud microphysical properties was evaluated by comparing simulations driven by different global forcings against <i>in situ</i> and remote sensing observations. The model results showed good skill in capturing the basic characteristics of the thunderstorm, particularly in terms of the spatial distribution of hydrometeors. The simulated spatial distribution of hail covers locations where hail fall was reported. The BRAMS simulations suggest that, despite relatively low values of the convective available potential energy (CAPE) (700–1000 J kg<sup>−1</sup>), environments with strong 0–8-km bulk shear (60–70 kt, ~30.9–36.0 m s<sup>–1</sup>) can promote the formation of ice clouds and hail fall over the eastern La Plata Basin. To be more conclusive, however, further research is needed to understand how different combinations of CAPE and shear affect hail formation over the region.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"24 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observing and forecasting the retreat of northern Australia’s rainy season 观测和预测澳大利亚北部雨季的消退
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-06 DOI: 10.1071/es23022
Tim Cowan, Emily Hinds, Andrew G. Marshall, Matthew C. Wheeler, Catherine de Burgh-Day

According to the Australian Bureau of Meteorology, the northern Australian wet season extends through to April, which also formally marks the end of Australia’s tropical cyclone season. Mid-autumn is when the tropical dry season transition period begins, when crop farmers prepare land for annual crops or pasture–fodder harvest, or when beef cattle producers make decisions regarding stock numbers and feed rationing. Potentially knowing if the last rains of the wet season will be later or earlier than normal would be valuable information for northern sectors such as agriculture, infrastructure and tourism. The Bureau of Meteorology provides seasonal forecasts of the Northern Rainfall Onset – the date when a location has accumulated 50 mm of rain from 1 September – yet there is currently no prediction of the rainy season retreat (the Northern Rainfall Retreat, NRR). In this study, we draw on three different NRR definitions and investigate how they vary with the El Niño–Southern Oscillation and the Madden–Julian Oscillation (MJO). In general, retreats occur ~1 week later than normal across the far northern tropics following La Niña events, but little change from normal occurs for El Niño. Although most retreats occur when the MJO is weak, if the MJO is active, retreats are mostly observed in phases 6 and 7, when convection is passing through the western Pacific. Utilising the Bureau of Meteorology’s sub-seasonal to seasonal forecast system, ACCESS-S2, we show that the model has some skill in forecasting the NRR across the far northern regions at a lead time of ~2.5 months, but poor skill in the subtropics and arid locations. Verification of the 2023 NRR forecasts, highlights the challenges of predicting the timing and magnitude of daily rainfall at such a long lead time.

根据澳大利亚气象局的数据,澳大利亚北部的雨季一直持续到四月,这也正式标志着澳大利亚热带气旋季节的结束。仲秋时节是热带旱季的过渡时期,也是农作物种植者为收获一年生作物或牧草饲料而整地的时节,还是肉牛生产者就存栏数量和饲料配给做出决定的时节。如果能知道雨季的最后一场降雨是晚于还是早于正常时间,对北方的农业、基础设施和旅游业等部门来说将是非常有价值的信息。气象局提供了北部降雨开始的季节性预报--即从 9 月 1 日起某地累计降雨量达到 50 毫米的日期,但目前还没有雨季消退(北部降雨消退,NRR)的预报。在本研究中,我们借鉴了三种不同的 NRR 定义,并研究了它们如何随厄尔尼诺-南方涛动和麦登-朱利安涛动(MJO)而变化。一般来说,在拉尼娜现象发生后,远北热带地区的退缩比正常情况晚 1 周左右,但在厄尔尼诺现象发生时,与正常情况相比变化不大。虽然大多数回缩发生在 MJO 较弱的时候,但如果 MJO 活跃,回缩大多发生在第 6 和第 7 阶段,此时对流正在穿过西太平洋。利用气象局的分季节到季节预报系统 ACCESS-S2,我们发现该模式在预报远北地区的 NRR 时,在约 2.5 个月的提前期有一定的预报能力,但在亚热带和干旱地区预报能力较差。对 2023 年 NRR 预报的验证凸显了在如此长的准备时间内预测每日降雨时间和降雨量所面临的挑战。
{"title":"Observing and forecasting the retreat of northern Australia’s rainy season","authors":"Tim Cowan, Emily Hinds, Andrew G. Marshall, Matthew C. Wheeler, Catherine de Burgh-Day","doi":"10.1071/es23022","DOIUrl":"https://doi.org/10.1071/es23022","url":null,"abstract":"<p>According to the Australian Bureau of Meteorology, the northern Australian wet season extends through to April, which also formally marks the end of Australia’s tropical cyclone season. Mid-autumn is when the tropical dry season transition period begins, when crop farmers prepare land for annual crops or pasture–fodder harvest, or when beef cattle producers make decisions regarding stock numbers and feed rationing. Potentially knowing if the last rains of the wet season will be later or earlier than normal would be valuable information for northern sectors such as agriculture, infrastructure and tourism. The Bureau of Meteorology provides seasonal forecasts of the Northern Rainfall Onset – the date when a location has accumulated 50 mm of rain from 1 September – yet there is currently no prediction of the rainy season retreat (the Northern Rainfall Retreat, NRR). In this study, we draw on three different NRR definitions and investigate how they vary with the El Niño–Southern Oscillation and the Madden–Julian Oscillation (MJO). In general, retreats occur ~1 week later than normal across the far northern tropics following La Niña events, but little change from normal occurs for El Niño. Although most retreats occur when the MJO is weak, if the MJO is active, retreats are mostly observed in phases 6 and 7, when convection is passing through the western Pacific. Utilising the Bureau of Meteorology’s sub-seasonal to seasonal forecast system, ACCESS-S2, we show that the model has some skill in forecasting the NRR across the far northern regions at a lead time of ~2.5 months, but poor skill in the subtropics and arid locations. Verification of the 2023 NRR forecasts, highlights the challenges of predicting the timing and magnitude of daily rainfall at such a long lead time.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of satellite altimetry for studying the water vapour variability over the tropical Indian Ocean 应用卫星测高法研究热带印度洋上空的水蒸汽变化情况
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-19 DOI: 10.1071/es23012
Fathin Nurzaman, Dudy D. Wijaya, Nabila S. E. Putri, Noor N. Abdullah, Brian Bramanto, Zamzam A. J. Tanuwijaya, Wedyanto Kuntjoro, Bambang Setyadji, Dhota Pradipta

Satellite altimetry was originally intended for oceanographic and geodetic applications. An uncommon application of satellite altimetry data, demonstrated in this paper, is for atmospheric study by utilising the onboard microwave radiometer. The Wet Tropospheric Correction (WTC) data from the Topex/Jason altimetry mission series (Topex/Poseidon, Jason-1, Jason-2/OSTM and Jason-3) are used, which have spanned nearly 30 years, making them sufficient for climate study. Precipitable Water Vapour (PWV) is derived from the WTC and used to study the atmospheric water vapour variability over the tropical Indian Ocean (TIO). Preliminary analysis is performed by comparing the generated PWV data with the PWV from a dedicated meteorological satellite Aqua, which was found to be comparable with a correlation coefficient of 0.94 for the monthly mean data and 0.74 for the anomaly component. Using standard empirical orthogonal function and composite analysis, the interannual variability of the tropospheric water vapour in TIO is thoroughly analysed. The mechanics and impacts of the two leading modes, the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are characterised. Furthermore, the modulation of the atmospheric circulation cell can be monitored. A distinct characteristic is found for the spurious IOD event in 2017 and 2018, which is the forming of a PWV anomaly meridional gradient in the Indian Ocean during June due to the activity of the Southern Indian Ocean Dipole mode. This showcases the potential of using altimetry satellite data for atmospheric study and opens up the possibility of further utilisation.

卫星测高最初用于海洋学和大地测量。本文所展示的卫星测高数据的一个不常见应用是利用星载微波辐射计进行大气研究。本文使用了 Topex/Jason 测高任务系列(Topex/Poseidon、Jason-1、Jason-2/OSTM 和 Jason-3)中的对流层湿校正(WTC)数据,这些数据已持续了近 30 年,足以用于气候研究。可降水汽度(PWV)由 WTC 导出,用于研究热带印度洋(TIO)上空的大气水汽变率。通过比较生成的可降水汽度数据和专用气象卫星 Aqua 的可降水汽度数据,进行了初步分析,发现两者具有可比性,月平均数据的相关系数为 0.94,异常分量的相关系数为 0.74。利用标准的经验正交函数和复合分析,对太湖流域对流层水汽的年际变化进行了深入分析。分析了两种主导模式--厄尔尼诺-南方涛动(ENSO)和印度洋偶极子(IOD)的机理和影响。此外,还可以监测大气环流单元的调制。在 2017 年和 2018 年的虚假 IOD 事件中发现了一个明显的特征,即由于南印度洋偶极子模式的活动,6 月份在印度洋形成了脉动温差异常经向梯度。这展示了利用测高卫星数据进行大气研究的潜力,并为进一步利用提供了可能。
{"title":"Application of satellite altimetry for studying the water vapour variability over the tropical Indian Ocean","authors":"Fathin Nurzaman, Dudy D. Wijaya, Nabila S. E. Putri, Noor N. Abdullah, Brian Bramanto, Zamzam A. J. Tanuwijaya, Wedyanto Kuntjoro, Bambang Setyadji, Dhota Pradipta","doi":"10.1071/es23012","DOIUrl":"https://doi.org/10.1071/es23012","url":null,"abstract":"<p>Satellite altimetry was originally intended for oceanographic and geodetic applications. An uncommon application of satellite altimetry data, demonstrated in this paper, is for atmospheric study by utilising the onboard microwave radiometer. The Wet Tropospheric Correction (WTC) data from the Topex/Jason altimetry mission series (Topex/Poseidon, Jason-1, Jason-2/OSTM and Jason-3) are used, which have spanned nearly 30 years, making them sufficient for climate study. Precipitable Water Vapour (PWV) is derived from the WTC and used to study the atmospheric water vapour variability over the tropical Indian Ocean (TIO). Preliminary analysis is performed by comparing the generated PWV data with the PWV from a dedicated meteorological satellite Aqua, which was found to be comparable with a correlation coefficient of 0.94 for the monthly mean data and 0.74 for the anomaly component. Using standard empirical orthogonal function and composite analysis, the interannual variability of the tropospheric water vapour in TIO is thoroughly analysed. The mechanics and impacts of the two leading modes, the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are characterised. Furthermore, the modulation of the atmospheric circulation cell can be monitored. A distinct characteristic is found for the spurious IOD event in 2017 and 2018, which is the forming of a PWV anomaly meridional gradient in the Indian Ocean during June due to the activity of the Southern Indian Ocean Dipole mode. This showcases the potential of using altimetry satellite data for atmospheric study and opens up the possibility of further utilisation.</p>","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"20 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal variability of monthly precipitation concentration in Argentina 阿根廷月降水浓度的时空变异
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-01-01 DOI: 10.1071/es22040
M. Llano
{"title":"Spatiotemporal variability of monthly precipitation concentration in Argentina","authors":"M. Llano","doi":"10.1071/es22040","DOIUrl":"https://doi.org/10.1071/es22040","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"6 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79611760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Determining the height of deep volcanic eruptions over the tropical western Pacific with Himawari-8 用Himawari-8测定热带西太平洋深部火山爆发的高度
IF 3.6 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2023-01-01 DOI: 10.1071/es22033
C. Lucas
{"title":"Determining the height of deep volcanic eruptions over the tropical western Pacific with Himawari-8","authors":"C. Lucas","doi":"10.1071/es22033","DOIUrl":"https://doi.org/10.1071/es22033","url":null,"abstract":"","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"183 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76259246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Southern Hemisphere Earth Systems Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1