Question Text Classification Method of Tourism Based on Deep Learning Model

Wanli Luo, Lei Zhang
{"title":"Question Text Classification Method of Tourism Based on Deep Learning Model","authors":"Wanli Luo, Lei Zhang","doi":"10.1155/2022/4330701","DOIUrl":null,"url":null,"abstract":"The Internet of Things applications are diverse in nature, and a key aspect of it is multimedia sensors and devices. These IoT multimedia devices form the Internet of Multimedia Things (IoMT). Compared with the Internet of Things, it generates a large amount of text data with different characteristics and requirements. Aiming at the problems that machine learning and single structure deep learning model cannot effectively grasp the text emotional information in text processing, resulting in poor classification effect, this paper proposes a text classification method of tourism questions based on deep learning model. First, the corpus is trained with word2vec tool based on continuous word bag model to obtain the text word vector representation. Then, the attention mechanism is introduced into the long-short term network (LSTM), and the attention-based LSTM model is constructed for text feature extraction, which highlights the impact of different words in the input text on the text emotion category. Finally, the text features are input into the Softmax classifier to obtain the probability distribution of text categories, and the model is trained combined with the cross entropy loss function. The experimental results show that the average accuracy, recall, and \n \n F\n \n value are 0.943, 0.867, and 0.903, respectively, which has better classification effect than other methods.","PeriodicalId":23995,"journal":{"name":"Wirel. Commun. Mob. Comput.","volume":"64 1","pages":"4330701:1-4330701:9"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Commun. Mob. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4330701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Internet of Things applications are diverse in nature, and a key aspect of it is multimedia sensors and devices. These IoT multimedia devices form the Internet of Multimedia Things (IoMT). Compared with the Internet of Things, it generates a large amount of text data with different characteristics and requirements. Aiming at the problems that machine learning and single structure deep learning model cannot effectively grasp the text emotional information in text processing, resulting in poor classification effect, this paper proposes a text classification method of tourism questions based on deep learning model. First, the corpus is trained with word2vec tool based on continuous word bag model to obtain the text word vector representation. Then, the attention mechanism is introduced into the long-short term network (LSTM), and the attention-based LSTM model is constructed for text feature extraction, which highlights the impact of different words in the input text on the text emotion category. Finally, the text features are input into the Softmax classifier to obtain the probability distribution of text categories, and the model is trained combined with the cross entropy loss function. The experimental results show that the average accuracy, recall, and F value are 0.943, 0.867, and 0.903, respectively, which has better classification effect than other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习模型的旅游问题文本分类方法
物联网的应用本质上是多种多样的,其中一个关键方面是多媒体传感器和设备。这些物联网多媒体设备构成了多媒体物联网(IoMT)。与物联网相比,它产生了大量具有不同特征和需求的文本数据。针对机器学习和单结构深度学习模型在文本处理中无法有效把握文本情感信息,导致分类效果不佳的问题,本文提出了一种基于深度学习模型的旅游问题文本分类方法。首先,使用基于连续词袋模型的word2vec工具对语料库进行训练,得到文本词向量表示;然后,将注意机制引入长短期网络(LSTM),构建基于注意的LSTM模型进行文本特征提取,突出输入文本中不同单词对文本情感类别的影响;最后,将文本特征输入到Softmax分类器中,得到文本类别的概率分布,并结合交叉熵损失函数对模型进行训练。实验结果表明,该方法的平均准确率、召回率和F值分别为0.943、0.867和0.903,具有较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI-Empowered Propagation Prediction and Optimization for Reconfigurable Wireless Networks C SVM Classification and KNN Techniques for Cyber Crime Detection A Secure and Efficient Energy Trading Model Using Blockchain for a 5G-Deployed Smart Community Fusion Deep Learning and Machine Learning for Heterogeneous Military Entity Recognition Influence of Embedded Microprocessor Wireless Communication and Computer Vision in Wushu Competition Referees' Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1