Neural Network Autoregressive For Predicting Daily Gold Price

Mohamad As’ad, S. Sujito, Sigit Setyowibowo
{"title":"Neural Network Autoregressive For Predicting Daily Gold Price","authors":"Mohamad As’ad, S. Sujito, Sigit Setyowibowo","doi":"10.25139/inform.v0i1.2715","DOIUrl":null,"url":null,"abstract":"Gold is a precious metal that functions as a gem and also an investment. Gold investment is the reason for many people because it is practical, not easily damaged, easy cashed, not taxable, and other purposes. Based on this, many people choose gold as an investment. The problem for people who will invest in gold is related to uncertain gold price predictions so that the accuracy of forecasting methods are needed. The purpose of this paper is to forecast accurately daily gold prices using the Neural Network Autoregressive (NNAR) method. Training Data to find out the value of accuracy in the NNAR method uses secondary data obtained from Yahoo Finance in the form of daily gold prices. Test results on the NNAR method produce a better and more accurate level using the NNAR (25,13) model with a MAPE value of 0.370707, a MASE of 0.5851083, and an RMSE of 6.939331. The conclusion of the results of this paper is the daily price of gold is influenced by the daily price of gold a day ago to 24 periods ago with the NNAR (25,13) model.","PeriodicalId":52760,"journal":{"name":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/inform.v0i1.2715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gold is a precious metal that functions as a gem and also an investment. Gold investment is the reason for many people because it is practical, not easily damaged, easy cashed, not taxable, and other purposes. Based on this, many people choose gold as an investment. The problem for people who will invest in gold is related to uncertain gold price predictions so that the accuracy of forecasting methods are needed. The purpose of this paper is to forecast accurately daily gold prices using the Neural Network Autoregressive (NNAR) method. Training Data to find out the value of accuracy in the NNAR method uses secondary data obtained from Yahoo Finance in the form of daily gold prices. Test results on the NNAR method produce a better and more accurate level using the NNAR (25,13) model with a MAPE value of 0.370707, a MASE of 0.5851083, and an RMSE of 6.939331. The conclusion of the results of this paper is the daily price of gold is influenced by the daily price of gold a day ago to 24 periods ago with the NNAR (25,13) model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络自回归预测每日黄金价格
黄金是一种贵金属,既是宝石,也是投资工具。很多人投资黄金的原因是因为它实用、不易损坏、易变现、不纳税等目的。基于此,很多人选择黄金作为投资。投资黄金的人面临的问题与黄金价格预测的不确定性有关,因此需要预测方法的准确性。本文的目的是利用神经网络自回归(NNAR)方法准确预测每日黄金价格。为了找出NNAR方法的准确性值,训练数据使用了从雅虎财经获得的每日黄金价格形式的辅助数据。NNAR方法的测试结果使用NNAR(25,13)模型得到了更好更准确的水平,MAPE值为0.370707,MASE为0.5851083,RMSE为6.939331。本文结果的结论是,利用NNAR(25,13)模型,黄金的日价格会受到一天到24个周期前的黄金日价格的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
审稿时长
10 weeks
期刊最新文献
Blended Learning Vocationalogy Entrepreneurship Program: Analysis of Human-Computer Interaction Based on Technology Acceptance Model (TAM) Sentiment Analysis for IMDb Movie Review Using Support Vector Machine (SVM) Method Estimation of Brake Pad Wear Using Fuzzy Logic in Real Time Website Analysis and Design Using Iconix Process Method: Case Study: Kedai Lengghian Classification of Pistachio Nut Using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1