Renato Aguilera, Eleanor Demis, Kelsey S. Scharnhorst, A. Stieg, M. Aono, J. Gimzewski
{"title":"Morphic atomic switch networks for beyond-Moore computing architectures","authors":"Renato Aguilera, Eleanor Demis, Kelsey S. Scharnhorst, A. Stieg, M. Aono, J. Gimzewski","doi":"10.1109/IITC-MAM.2015.7325611","DOIUrl":null,"url":null,"abstract":"We discuss the utility of ASNs as a uniquely scalable physical platform capable of hybrid-CMOS architectures and novel computation. Through a combination of controlled design with spontaneous self-organization, an atomic switch network (ASN) has been produce as a purpose-built complex system. A highly interconnected system of Ag2S resistive switches, the ASN has been shown to produce fault-tolerant switching and a set of complex dynamics similar to biological neural networks.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"24 1","pages":"165-168"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We discuss the utility of ASNs as a uniquely scalable physical platform capable of hybrid-CMOS architectures and novel computation. Through a combination of controlled design with spontaneous self-organization, an atomic switch network (ASN) has been produce as a purpose-built complex system. A highly interconnected system of Ag2S resistive switches, the ASN has been shown to produce fault-tolerant switching and a set of complex dynamics similar to biological neural networks.