Design of Mechanical Properties of Poly(butylene-adipate-terephthalate) Reinforced with Zein-TiO2 Complex

Elena Togliatti, M. Grimaldi, Olimpia Pitirollo, A. Cavazza, D. Pugliese, D. Milanese, C. Sciancalepore
{"title":"Design of Mechanical Properties of Poly(butylene-adipate-terephthalate) Reinforced with Zein-TiO2 Complex","authors":"Elena Togliatti, M. Grimaldi, Olimpia Pitirollo, A. Cavazza, D. Pugliese, D. Milanese, C. Sciancalepore","doi":"10.1155/2022/6496985","DOIUrl":null,"url":null,"abstract":"<jats:p>Mechanical properties of polymer biocomposites are influenced by the interaction between the matrix and the filler surface. In this work, composites based on poly(butylene-adipate-terephthalate) (PBAT) filled with micrometric particles of zein-TiO2 complex (ZTC) were realized via solvent casting technique at different concentrations, equal to 0, 5, 10, and 20 wt%. After pelletization, the resulting materials were injection molded into standard specimens, employed for the uniaxial tensile test (UTT) characterization. From the stress-strain curves, Young’s modulus (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>E</mi>\n </math>\n </jats:inline-formula>), yield stress (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), stress at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), elongation at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>ε</mi>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), and toughness (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>T</mi>\n </math>\n </jats:inline-formula>) were collected. The addition of the ZTC proved to show a reinforcing effect on the polymeric matrix, with an increase in both <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>E</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>. Modelling of the mechanical properties was performed by applying Kerner’s and Pukánszky’s equations. Kerner’s model, applied on experimental <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>E</mi>\n </math>\n </jats:inline-formula> values, returned a very good correspondence between collected and theoretical values. From the application of Pukánszky’s model to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>, the obtained <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>B</mi>\n </math>\n </jats:inline-formula> value showed a good interfacial interaction between the matrix and the filler. Due to the enhanced stiffness of the composites, a reduction in the true stress at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n <mo>,</mo>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>) was observed. The modified Pukánszky’s model gave a <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>B</mi>\n </math>\n </jats:inline-formula> value lower than the one obtained for the yield, but still in the range of acceptable values for microcomposites.</jats:p>","PeriodicalId":18220,"journal":{"name":"Material Design &amp; Processing Communications","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design &amp; Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6496985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mechanical properties of polymer biocomposites are influenced by the interaction between the matrix and the filler surface. In this work, composites based on poly(butylene-adipate-terephthalate) (PBAT) filled with micrometric particles of zein-TiO2 complex (ZTC) were realized via solvent casting technique at different concentrations, equal to 0, 5, 10, and 20 wt%. After pelletization, the resulting materials were injection molded into standard specimens, employed for the uniaxial tensile test (UTT) characterization. From the stress-strain curves, Young’s modulus ( E ), yield stress ( σ y ), stress at break ( σ B ), elongation at break ( ε B ), and toughness ( T ) were collected. The addition of the ZTC proved to show a reinforcing effect on the polymeric matrix, with an increase in both E and σ y . Modelling of the mechanical properties was performed by applying Kerner’s and Pukánszky’s equations. Kerner’s model, applied on experimental E values, returned a very good correspondence between collected and theoretical values. From the application of Pukánszky’s model to σ y , the obtained B value showed a good interfacial interaction between the matrix and the filler. Due to the enhanced stiffness of the composites, a reduction in the true stress at break ( σ T , B ) was observed. The modified Pukánszky’s model gave a B value lower than the one obtained for the yield, but still in the range of acceptable values for microcomposites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米蛋白- tio2配合物增强聚己二酸丁酯的力学性能设计
高分子生物复合材料的力学性能受基体与填料表面相互作用的影响。在这项工作中,通过溶剂铸造技术,制备了以聚己二酸丁烯-对苯二甲酸乙酯(PBAT)为基础的复合材料,并填充了不同浓度的玉米- tio2复合物(ZTC),分别为0、5、10和20 wt%。球团化后,得到的材料被注塑成标准样品,用于单轴拉伸试验(UTT)表征。从应力-应变曲线,杨氏模量(E),屈服应力(σ y),断裂应力(σ B);收集断裂伸长率(ε B)和韧性(T)。ZTC的加入对聚合物基体有增强作用,E和σ y均增加。采用Kerner’s和Pukánszky’s方程对其力学性能进行建模。将Kerner的模型应用于实验E值,在收集值和理论值之间返回了非常好的对应关系。从Pukánszky模型对σ y的应用来看,得到的B值表明基体与填料之间具有良好的界面相互作用。由于复合材料的刚度增强,断裂时的真实应力(σ T, B)减小。修改后的Pukánszky模型给出的B值低于获得的屈服值,但仍在微复合材料的可接受值范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of the Compression Testing of Additively Manufactured Lattice Structures Using Inputs from Microcomputed Tomography Experimental Investigations of Damage Identification for Aluminum Foam Sandwich Beams Using Two-Step Method Toughness Enhancement of PLA-Based Filaments for Material Extrusion 3D Printing Investigation of the Effect of Tool Temperature on Microstructure, Hardness, and Wear Behaviour of Aluminium 6061-T6 Alloy Welded by the Friction Stir Welding Process Porous Titanium Scaffold: A New Design for Controlled Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1