Elena Togliatti, M. Grimaldi, Olimpia Pitirollo, A. Cavazza, D. Pugliese, D. Milanese, C. Sciancalepore
{"title":"Design of Mechanical Properties of Poly(butylene-adipate-terephthalate) Reinforced with Zein-TiO2 Complex","authors":"Elena Togliatti, M. Grimaldi, Olimpia Pitirollo, A. Cavazza, D. Pugliese, D. Milanese, C. Sciancalepore","doi":"10.1155/2022/6496985","DOIUrl":null,"url":null,"abstract":"<jats:p>Mechanical properties of polymer biocomposites are influenced by the interaction between the matrix and the filler surface. In this work, composites based on poly(butylene-adipate-terephthalate) (PBAT) filled with micrometric particles of zein-TiO2 complex (ZTC) were realized via solvent casting technique at different concentrations, equal to 0, 5, 10, and 20 wt%. After pelletization, the resulting materials were injection molded into standard specimens, employed for the uniaxial tensile test (UTT) characterization. From the stress-strain curves, Young’s modulus (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>E</mi>\n </math>\n </jats:inline-formula>), yield stress (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), stress at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), elongation at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>ε</mi>\n </mrow>\n <mrow>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>), and toughness (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>T</mi>\n </math>\n </jats:inline-formula>) were collected. The addition of the ZTC proved to show a reinforcing effect on the polymeric matrix, with an increase in both <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>E</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>. Modelling of the mechanical properties was performed by applying Kerner’s and Pukánszky’s equations. Kerner’s model, applied on experimental <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>E</mi>\n </math>\n </jats:inline-formula> values, returned a very good correspondence between collected and theoretical values. From the application of Pukánszky’s model to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>y</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>, the obtained <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>B</mi>\n </math>\n </jats:inline-formula> value showed a good interfacial interaction between the matrix and the filler. Due to the enhanced stiffness of the composites, a reduction in the true stress at break (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <msub>\n <mrow>\n <mi>σ</mi>\n </mrow>\n <mrow>\n <mi>T</mi>\n <mo>,</mo>\n <mi>B</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>) was observed. The modified Pukánszky’s model gave a <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>B</mi>\n </math>\n </jats:inline-formula> value lower than the one obtained for the yield, but still in the range of acceptable values for microcomposites.</jats:p>","PeriodicalId":18220,"journal":{"name":"Material Design & Processing Communications","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6496985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Mechanical properties of polymer biocomposites are influenced by the interaction between the matrix and the filler surface. In this work, composites based on poly(butylene-adipate-terephthalate) (PBAT) filled with micrometric particles of zein-TiO2 complex (ZTC) were realized via solvent casting technique at different concentrations, equal to 0, 5, 10, and 20 wt%. After pelletization, the resulting materials were injection molded into standard specimens, employed for the uniaxial tensile test (UTT) characterization. From the stress-strain curves, Young’s modulus (), yield stress (), stress at break (), elongation at break (), and toughness () were collected. The addition of the ZTC proved to show a reinforcing effect on the polymeric matrix, with an increase in both and . Modelling of the mechanical properties was performed by applying Kerner’s and Pukánszky’s equations. Kerner’s model, applied on experimental values, returned a very good correspondence between collected and theoretical values. From the application of Pukánszky’s model to , the obtained value showed a good interfacial interaction between the matrix and the filler. Due to the enhanced stiffness of the composites, a reduction in the true stress at break () was observed. The modified Pukánszky’s model gave a value lower than the one obtained for the yield, but still in the range of acceptable values for microcomposites.