{"title":"An Efficient Rotationally Symmetric Approach for the Design of Sparse Conformal Arrays in Wide Angle Scanning","authors":"Guan Pengfei, Fan Zhenhong, Ding Dazhi, C. Rushan","doi":"10.47037/2020.ACES.J.360302","DOIUrl":null,"url":null,"abstract":"This paper addresses a novel rotationally symmetric technique with multiple constraints for sparse conformal array synthesis. The purpose is to synthesis a sparse optimal common element positions on the conformal surface varying multiple patterns of wide\nangle scanning with the behavior of low sidelobe levels (SLL). The conformal surface aperture is partitioned into several rotationally symmetric sections. The element positions and element numbers of only one section need to be optimized, which contribute to the reduction of optimizing variables and computation resources. We formulate the synthesis problem as a constrained optimization problem, which takes the peak sidelobe level (PSLL) as the fitness function, and sets the total number of array elements, the minimum spacing between two adjacent elements to form multiple constraints. The Brain Storm Optimization (BSO) is further exploited into the synthesis problem with multiple constraints. A set of representative numerical examples are presented to assess the advantages and effectiveness of the proposed method.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.ACES.J.360302","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addresses a novel rotationally symmetric technique with multiple constraints for sparse conformal array synthesis. The purpose is to synthesis a sparse optimal common element positions on the conformal surface varying multiple patterns of wide
angle scanning with the behavior of low sidelobe levels (SLL). The conformal surface aperture is partitioned into several rotationally symmetric sections. The element positions and element numbers of only one section need to be optimized, which contribute to the reduction of optimizing variables and computation resources. We formulate the synthesis problem as a constrained optimization problem, which takes the peak sidelobe level (PSLL) as the fitness function, and sets the total number of array elements, the minimum spacing between two adjacent elements to form multiple constraints. The Brain Storm Optimization (BSO) is further exploited into the synthesis problem with multiple constraints. A set of representative numerical examples are presented to assess the advantages and effectiveness of the proposed method.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.