Multiscale population dynamics in reproductive biology: singular perturbation reduction in deterministic and stochastic models

Céline Bonnet, K. Chahour, F. Cl'ement, M. Postel, R. Yvinec
{"title":"Multiscale population dynamics in reproductive biology: singular perturbation reduction in deterministic and stochastic models","authors":"Céline Bonnet, K. Chahour, F. Cl'ement, M. Postel, R. Yvinec","doi":"10.1051/proc/202067006","DOIUrl":null,"url":null,"abstract":"In this study, we describe different modeling approaches for ovarian follicle population dynamics, based on either ordinary (ODE), partial (PDE) or stochastic (SDE) differential equations, and accounting for interactions between follicles. We put a special focus on representing the population-level feedback exerted by growing ovarian follicles onto the activation of quiescent follicles. We take advantage of the timescale difference existing between the growth and activation processes to apply model reduction techniques in the framework of singular perturbations. We first study the linear versions of the models to derive theoretical results on the convergence to the limit models. In the nonlinear cases, we provide detailed numerical evidence of convergence to the limit behavior. We reproduce the main semi-quantitative features characterizing the ovarian follicle pool, namely a bimodal distribution of the whole population, and a slope break in the decay of the quiescent pool with aging.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202067006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we describe different modeling approaches for ovarian follicle population dynamics, based on either ordinary (ODE), partial (PDE) or stochastic (SDE) differential equations, and accounting for interactions between follicles. We put a special focus on representing the population-level feedback exerted by growing ovarian follicles onto the activation of quiescent follicles. We take advantage of the timescale difference existing between the growth and activation processes to apply model reduction techniques in the framework of singular perturbations. We first study the linear versions of the models to derive theoretical results on the convergence to the limit models. In the nonlinear cases, we provide detailed numerical evidence of convergence to the limit behavior. We reproduce the main semi-quantitative features characterizing the ovarian follicle pool, namely a bimodal distribution of the whole population, and a slope break in the decay of the quiescent pool with aging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生殖生物学中的多尺度种群动态:确定性和随机模型中的奇异扰动减少
在本研究中,我们描述了基于普通(ODE)、偏(PDE)或随机(SDE)微分方程的卵巢卵泡种群动态的不同建模方法,并考虑了卵泡之间的相互作用。我们把一个特别的重点放在代表群体水平的反馈施加增长卵巢卵泡对静止卵泡的激活。我们利用生长过程和激活过程之间存在的时间尺度差异,在奇异扰动的框架下应用模型约简技术。我们首先研究了模型的线性版本,得到了极限模型收敛性的理论结果。在非线性情况下,给出了极限收敛性的详细数值证据。我们再现了卵巢卵泡池的主要半定量特征,即整个种群的双峰分布,以及静止池随年龄增长而衰减的斜率断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena Study of relaxation processes in a two-phase flow model Accelerating metabolic models evaluation with statistical metamodels: application to Salmonella infection models Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches Comparison of statistical, machine learning, and mathematical modelling methods to investigate the effect of ageing on dog’s cardiovascular system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1