Explainable artificial intelligence: an analytical review

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2021-07-12 DOI:10.1002/widm.1424
P. Angelov, E. Soares, Richard Jiang, Nicholas I. Arnold, Peter M. Atkinson
{"title":"Explainable artificial intelligence: an analytical review","authors":"P. Angelov, E. Soares, Richard Jiang, Nicholas I. Arnold, Peter M. Atkinson","doi":"10.1002/widm.1424","DOIUrl":null,"url":null,"abstract":"This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"70 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"208","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1424","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 208

Abstract

This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释的人工智能:分析回顾
本文在机器学习和深度学习的最新进展背景下,对人工智能的可解释性进行了简要的分析回顾。本文从简要的历史介绍和分类开始,并根据最近制定的国家标准研究所可解释性的四项原则,阐述了可解释性方面的主要挑战。最近发表的方法相关的主题,然后严格审查和分析。最后,对今后的研究方向提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1