J. Formhals, B. Welsch, H. Hemmatabady, D. Schulte, L. Seib, I. Sass
{"title":"Co-simulation of district heating systems and borehole heat exchanger arrays using 3D finite element method subsurface models","authors":"J. Formhals, B. Welsch, H. Hemmatabady, D. Schulte, L. Seib, I. Sass","doi":"10.1080/19401493.2022.2058088","DOIUrl":null,"url":null,"abstract":"Integration of borehole heat exchangers (BHE) into district heating (DH) should be supported by numerical simulations to ensure efficient operation. Co-simulation allows for the use of dedicated software for above and below ground sub-models, facilitating the use of detailed 3D geological models. This paper presents a methodology for coupling DH models in Modelica to 3D FEM subsurface models. An interface which implements BHE models in Modelica and one with BHE models in the FEM model are compared to a benchmark model. Furthermore, an adaptive control of the communication steps reduces communication error and computational times simultaneously. A fictional solar DH system with underground thermal energy storage is co-simulated to demonstrate potential advantages of the proposed method. Overall, co-simulation of DH systems and BHE arrays facilitates accurate performance assessment of systems for which this would not be possible otherwise, but should be applied carefully, due to the increased computational effort.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"44 3 1","pages":"362 - 378"},"PeriodicalIF":2.2000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2058088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Integration of borehole heat exchangers (BHE) into district heating (DH) should be supported by numerical simulations to ensure efficient operation. Co-simulation allows for the use of dedicated software for above and below ground sub-models, facilitating the use of detailed 3D geological models. This paper presents a methodology for coupling DH models in Modelica to 3D FEM subsurface models. An interface which implements BHE models in Modelica and one with BHE models in the FEM model are compared to a benchmark model. Furthermore, an adaptive control of the communication steps reduces communication error and computational times simultaneously. A fictional solar DH system with underground thermal energy storage is co-simulated to demonstrate potential advantages of the proposed method. Overall, co-simulation of DH systems and BHE arrays facilitates accurate performance assessment of systems for which this would not be possible otherwise, but should be applied carefully, due to the increased computational effort.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.