The impact of the collaborative workplace on the production system capacity: Simulation modelling vs. real-world application approach

IF 2.8 3区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Production Engineering & Management Pub Date : 2021-12-18 DOI:10.14743/apem2021.4.411
R. Ojsteršek, A. Javernik, B. Buchmeister
{"title":"The impact of the collaborative workplace on the production system capacity: Simulation modelling vs. real-world application approach","authors":"R. Ojsteršek, A. Javernik, B. Buchmeister","doi":"10.14743/apem2021.4.411","DOIUrl":null,"url":null,"abstract":"In recent years, there have been more and more collaborative workplaces in different types of manufacturing systems. Although the introduction of collaborative workplaces can be cost-effective, there is still much uncertainty about how such workplaces affect the capacity of the rest of production system. The article presents the importance of introducing collaborative workplaces in manual assembly operations where the production capacities are already limited. With the simulation modelling method, the evaluation of the introduction impact of collaborative workplaces on manual assembly operations that represent bottlenecks in the production process is presented. The research presents two approaches to workplace performance evaluation, both simulation modelling and a real-world collaborative workplace example, as a basis of a detailed time study. The main findings are comparisons of simulation modelling results and a study of a real-world collaborative workplace, with graphically and numerically presented parameters describing the utilization of production capacities, their efficiency and financial justification. The research confirms the expediency of the collaborative workplaces use and emphasise the importance of further research in the field of their technological and sociological impacts.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":"56 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2021.4.411","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 15

Abstract

In recent years, there have been more and more collaborative workplaces in different types of manufacturing systems. Although the introduction of collaborative workplaces can be cost-effective, there is still much uncertainty about how such workplaces affect the capacity of the rest of production system. The article presents the importance of introducing collaborative workplaces in manual assembly operations where the production capacities are already limited. With the simulation modelling method, the evaluation of the introduction impact of collaborative workplaces on manual assembly operations that represent bottlenecks in the production process is presented. The research presents two approaches to workplace performance evaluation, both simulation modelling and a real-world collaborative workplace example, as a basis of a detailed time study. The main findings are comparisons of simulation modelling results and a study of a real-world collaborative workplace, with graphically and numerically presented parameters describing the utilization of production capacities, their efficiency and financial justification. The research confirms the expediency of the collaborative workplaces use and emphasise the importance of further research in the field of their technological and sociological impacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作工作场所对生产系统能力的影响:仿真建模与现实世界应用方法
近年来,在不同类型的制造系统中出现了越来越多的协同工作场所。尽管引入协作工作场所可能具有成本效益,但这种工作场所如何影响生产系统其余部分的能力仍然存在很多不确定性。本文介绍了在生产能力已经有限的手工装配操作中引入协作工作场所的重要性。采用仿真建模的方法,评估了协同工作场所对生产过程中存在瓶颈的人工装配作业的引入影响。该研究提出了两种工作场所绩效评估方法,一种是模拟建模,另一种是现实世界的协作工作场所实例,作为详细时间研究的基础。主要研究结果是仿真建模结果的比较和对现实世界协作工作场所的研究,用图形和数字表示的参数描述了生产能力的利用、效率和财务合理性。该研究证实了协作工作场所使用的权宜之计,并强调了在其技术和社会学影响领域进一步研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Production Engineering & Management
Advances in Production Engineering & Management ENGINEERING, MANUFACTURINGMATERIALS SCIENC-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
22.20%
发文量
19
期刊介绍: Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.
期刊最新文献
Optimal path planning of a disinfection mobile robot against COVID-19 in a ROS-based research platform A comparative study of different pull control strategies in multi-product manufacturing systems using discrete event simulation The impact of the collaborative workplace on the production system capacity: Simulation modelling vs. real-world application approach Molecular-dynamics study of multi-pulsed ultrafast laser interaction with copper A deep learning-based worker assistance system for error prevention: Case study in a real-world manual assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1