{"title":"An investigation on electrical discharge metal matrix coating of ZE41A magnesium alloy","authors":"U. Elaiyarasan, V. Satheeshkumar, C. Senthilkumar","doi":"10.1051/METAL/2021034","DOIUrl":null,"url":null,"abstract":"The present paper studied the experimental investigation on electrical discharge coating of ZE41A magnesium alloy (EDC) with tungsten carbide-copper (WC/Cu) powder metallurgy (PM) electrode. In order to attain the surface characteristics, three parameters were selected such as compaction load, current and pulse on time. Response characteristics such as material transfer rate (MTR) and surface roughness (Ra) were considered in this study. Central composite design in response surface methodology was applied to conduct experiments. Empirical models were developed for MTR and SR. AVOVA test was conducted to identify the most influence parameters. Additionally, optimized parameters were identified by response surface optimizer. It is observed that the current play a vital role in increasing the MTR and minimize the SR of the coated surface followed by compaction load and pulse on time. Various studies such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were carried out on the coated surface. Bulk mass deposition and bigger craters were observed in the surface coated with 150 MPa and 3A respectively.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"15 1","pages":"314"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
The present paper studied the experimental investigation on electrical discharge coating of ZE41A magnesium alloy (EDC) with tungsten carbide-copper (WC/Cu) powder metallurgy (PM) electrode. In order to attain the surface characteristics, three parameters were selected such as compaction load, current and pulse on time. Response characteristics such as material transfer rate (MTR) and surface roughness (Ra) were considered in this study. Central composite design in response surface methodology was applied to conduct experiments. Empirical models were developed for MTR and SR. AVOVA test was conducted to identify the most influence parameters. Additionally, optimized parameters were identified by response surface optimizer. It is observed that the current play a vital role in increasing the MTR and minimize the SR of the coated surface followed by compaction load and pulse on time. Various studies such as scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were carried out on the coated surface. Bulk mass deposition and bigger craters were observed in the surface coated with 150 MPa and 3A respectively.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.