Yanshuang Guo, Yanqun Zhuo, Peixun Liu, Shunyun Chen, Jin Ma
{"title":"EXPERIMENTAL STUDY OF OBSERVABLE DEFORMATION PROCESS IN FAULT META-INSTABILITY STATE BEFORE EARTHQUAKE GENERATION","authors":"Yanshuang Guo, Yanqun Zhuo, Peixun Liu, Shunyun Chen, Jin Ma","doi":"10.5800/gt-2020-11-2-0483","DOIUrl":null,"url":null,"abstract":"1. Fault meta-instability is a key observable deformation stage to identify seismic precursor information. 2. Local preslips or micro-ruptures happen in few segments of fault, but there is only one nucleation zone. 3. The preslip areas first occur in the segments of low volume strain, but fast instability of the fault starts in the high volume strain area. ABSTRACT. According to the steady state of fault and energy balance, we provided a new idea to observe the precursors for a stressed fault. The meta-instability (or sub-instability) state of a fault is defined as the transition phase from peak stress to critical stress of fast instability (earthquake generation) during a full period of slow loading and fast unloading. The accumulative deformation energy begins to release in this stage. Identifying its deformation before fast instability would be beneficial to obtain premonitory information, and to evaluate the seismic risks of tectonic regions. In this study, we emphasized to analyze deformation process of the meta-instable stage with stain tensor data from a straight precut fault in granite at a slow loading rate, and observed the tempo-spatial features during the full deformation process of the fault. Two types of tectonic zones and instabilities occur on the stick-slip fault. The low- and high-value segments in the volume strain component appear along the fault strike with a load increment. The former first weakens and then becomes initial energy release segments; the latter forms strong stress-interlocking areas and finally turns into the initial region of fast instability. And there are two stages in the entire instable process of the fault: the initial stage is associated with the release of the low volume strain segments, which means fault pre-slips, slow earthquakes or weak earthquakes. The second one characterizes a strong earthquake through the release of high volume strain parts. The rupture acceleration in the first stage promotes the generation of the second. Moreover, fault instability contains two types of strain adjustments along the fault: the front-like strain change along the transition segments from low- to high- strain portions with volume strain release, and the compressive strain pulse of fault instability after the volume strain release extends to a certain range with loading increment. In laboratory experiments, the front-type strain occurs about 12 seconds before fast fault instability; the compressive pulse initiates within less than 0.1 second, and then the fault turns quickly into a dynamic strain adjustment, which appears quasi-synchronously between different measurement points, and, finally, an earthquake is generated.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-2-0483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
1. Fault meta-instability is a key observable deformation stage to identify seismic precursor information. 2. Local preslips or micro-ruptures happen in few segments of fault, but there is only one nucleation zone. 3. The preslip areas first occur in the segments of low volume strain, but fast instability of the fault starts in the high volume strain area. ABSTRACT. According to the steady state of fault and energy balance, we provided a new idea to observe the precursors for a stressed fault. The meta-instability (or sub-instability) state of a fault is defined as the transition phase from peak stress to critical stress of fast instability (earthquake generation) during a full period of slow loading and fast unloading. The accumulative deformation energy begins to release in this stage. Identifying its deformation before fast instability would be beneficial to obtain premonitory information, and to evaluate the seismic risks of tectonic regions. In this study, we emphasized to analyze deformation process of the meta-instable stage with stain tensor data from a straight precut fault in granite at a slow loading rate, and observed the tempo-spatial features during the full deformation process of the fault. Two types of tectonic zones and instabilities occur on the stick-slip fault. The low- and high-value segments in the volume strain component appear along the fault strike with a load increment. The former first weakens and then becomes initial energy release segments; the latter forms strong stress-interlocking areas and finally turns into the initial region of fast instability. And there are two stages in the entire instable process of the fault: the initial stage is associated with the release of the low volume strain segments, which means fault pre-slips, slow earthquakes or weak earthquakes. The second one characterizes a strong earthquake through the release of high volume strain parts. The rupture acceleration in the first stage promotes the generation of the second. Moreover, fault instability contains two types of strain adjustments along the fault: the front-like strain change along the transition segments from low- to high- strain portions with volume strain release, and the compressive strain pulse of fault instability after the volume strain release extends to a certain range with loading increment. In laboratory experiments, the front-type strain occurs about 12 seconds before fast fault instability; the compressive pulse initiates within less than 0.1 second, and then the fault turns quickly into a dynamic strain adjustment, which appears quasi-synchronously between different measurement points, and, finally, an earthquake is generated.
期刊介绍:
The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.