Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2s-0630
E. Gorbunova, A. Besedina, I. Sanina, N. Konstantinovskaya
The results of joint processing of hydrogeological and seismic data obtained at the Large-Scale Research Facilities "Mid-Latitude Geophysical Observation Complex "Mikhnevo" for a 12-year observation period are presented in the article. Responses of the "reservoir-well" system to the passage of seismic waves from distant earthquakes with magnitudes of 6.3-9.0, recorded at the epicentral distances from 1863 to 16507 km, have been identified in the database. Maximum values of groundwater level variations and ground velocity under seismic impact have been determined. The power-law dependence of the levels amplitudes of confined and weakly confined aquifers on the maximum vertical ground velocity has been established. A spectral analysis of 6-hour intervals (3 hours before and 3 hours after earthquakes) of seismic and hydrogeological data was performed. The frequencies corresponding to the maximum values of ground velocity and groundwater level variations were determined in the normalized spectra. The intervals within which the extremes of the hydrogeological responses are traced at background values of the ground velocity are identified in the low-frequency range. The amplitude-frequency characteristics of the "reservoir-well" systems differ under seismic impacts at epicentral distances up to 4901 km. The responses of the systems to earthquakes at epicentral distances of 11024-14026 km are similar.
{"title":"A RESPONSE OF THE \"RESERVOIR-WELL\" SYSTEM TO DISTANT EARTHQUAKES","authors":"E. Gorbunova, A. Besedina, I. Sanina, N. Konstantinovskaya","doi":"10.5800/gt-2022-13-2s-0630","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0630","url":null,"abstract":"The results of joint processing of hydrogeological and seismic data obtained at the Large-Scale Research Facilities \"Mid-Latitude Geophysical Observation Complex \"Mikhnevo\" for a 12-year observation period are presented in the article. Responses of the \"reservoir-well\" system to the passage of seismic waves from distant earthquakes with magnitudes of 6.3-9.0, recorded at the epicentral distances from 1863 to 16507 km, have been identified in the database. Maximum values of groundwater level variations and ground velocity under seismic impact have been determined. The power-law dependence of the levels amplitudes of confined and weakly confined aquifers on the maximum vertical ground velocity has been established. A spectral analysis of 6-hour intervals (3 hours before and 3 hours after earthquakes) of seismic and hydrogeological data was performed. The frequencies corresponding to the maximum values of ground velocity and groundwater level variations were determined in the normalized spectra. The intervals within which the extremes of the hydrogeological responses are traced at background values of the ground velocity are identified in the low-frequency range. The amplitude-frequency characteristics of the \"reservoir-well\" systems differ under seismic impacts at epicentral distances up to 4901 km. The responses of the systems to earthquakes at epicentral distances of 11024-14026 km are similar.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91229476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2s-0602
D. Kiseleva, E. Shagalov, T. G. Okuneva, N. Soloshenko, А. D. Ryanskaya, E. A. Pankrushina, S. Karpova, K. K. Urazov, A. R. Sidoruk
87Sr/86Sr isotopic ratios are widely used to identify strontium sources and study strontium behaviour in(bio)geochemical cycles. 87Sr/86Sr in surface waters can reflect the average composition of bioavailable (i.e. available forfurther absorption by plants and animals) strontium in the catchment specific area. Based on those 87Sr/86Sr ratios, theregional maps of the bioavailable strontium distribution (strontium isoscapes) can be compiled. A complex block structurecharacterizes the Ural mountain system. Individual parts (blocks) are composed of rocks of various ages, genesis andgeochemical characteristics, which can radically change at a distance of several tens of kilometres. Such variability wouldbe reflected in strontium isotopic ratios, thus making it possible to determine the local isotopic signatures of bioavailablestrontium.This work aimed to study 87Sr/86Sr in the water in the rivers of the Southern Urals. We determined the contents andisotopic ratios of strontium in river water samples collected from the territories of the Orenburg and Chelyabinsk regionsand the Republic of Bashkortostan in 2019–2020.For the first time in the surface water of the rivers in the Southern Urals (Ural, Belaya, Tobol, Karagaily-Ayat, Sim, andothers), the 87Sr/86Sr isotopic ratios have been determined, and their variations have been analyzed. 87Sr/86Sr values varyin the range 0.70666–0.71063 (average 0.70908) for the rivers of the Urals basin, 0.70749–0.71058 (average 0.70924)for the Kama-Volga basin, 0.70946–0.71176 (average 0.71071) for the Tobol basin. Such features of the strontium isotopiccomposition may be due to the influence of underlying rocks of the catchment area drained by river water. The dataobtained can be used to identify the sources of strontium input into the water system during hydrological and environmentalstudies; to confirm the authenticity of food products of plant and animal origin; to carry out comparisons in thestudies of the migration of ancient people and animals, as well as to determine the raw material areas for the productionof vegetable and woollen textiles and wooden products in antiquity.
{"title":"8787Sr/86Sr ISOTOPE RATIOS IN THE RIVER WATERS OF THE SOUTHERN URALS","authors":"D. Kiseleva, E. Shagalov, T. G. Okuneva, N. Soloshenko, А. D. Ryanskaya, E. A. Pankrushina, S. Karpova, K. K. Urazov, A. R. Sidoruk","doi":"10.5800/gt-2022-13-2s-0602","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0602","url":null,"abstract":"87Sr/86Sr isotopic ratios are widely used to identify strontium sources and study strontium behaviour in(bio)geochemical cycles. 87Sr/86Sr in surface waters can reflect the average composition of bioavailable (i.e. available forfurther absorption by plants and animals) strontium in the catchment specific area. Based on those 87Sr/86Sr ratios, theregional maps of the bioavailable strontium distribution (strontium isoscapes) can be compiled. A complex block structurecharacterizes the Ural mountain system. Individual parts (blocks) are composed of rocks of various ages, genesis andgeochemical characteristics, which can radically change at a distance of several tens of kilometres. Such variability wouldbe reflected in strontium isotopic ratios, thus making it possible to determine the local isotopic signatures of bioavailablestrontium.This work aimed to study 87Sr/86Sr in the water in the rivers of the Southern Urals. We determined the contents andisotopic ratios of strontium in river water samples collected from the territories of the Orenburg and Chelyabinsk regionsand the Republic of Bashkortostan in 2019–2020.For the first time in the surface water of the rivers in the Southern Urals (Ural, Belaya, Tobol, Karagaily-Ayat, Sim, andothers), the 87Sr/86Sr isotopic ratios have been determined, and their variations have been analyzed. 87Sr/86Sr values varyin the range 0.70666–0.71063 (average 0.70908) for the rivers of the Urals basin, 0.70749–0.71058 (average 0.70924)for the Kama-Volga basin, 0.70946–0.71176 (average 0.71071) for the Tobol basin. Such features of the strontium isotopiccomposition may be due to the influence of underlying rocks of the catchment area drained by river water. The dataobtained can be used to identify the sources of strontium input into the water system during hydrological and environmentalstudies; to confirm the authenticity of food products of plant and animal origin; to carry out comparisons in thestudies of the migration of ancient people and animals, as well as to determine the raw material areas for the productionof vegetable and woollen textiles and wooden products in antiquity.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84677540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2s-0612
I. Alexandrov, V. Ivin, A. Malinovsky, S. Budnitskiy
First detrital zircon geochronology data and results of geochemical studies for clastic rocks of the Rymnik and Nabil zones of the East Sakhalin accretionary terrane, located within the region of the East Sakhalin Mountains, are presented. The studies have been carried out at the Center for Collective Use of Far Eastern Geological Institute of the Far East Branch of the Russian Academy of Sciences in Vladivostok. The established geochemical features suggest that the source of the clastic material of the zones was felsic rocks of the deeply eroded continental island arc or arcs. Although the geochemical characteristics are similar, there are sharp differences between the detrital zircons’ age distribution patterns of rocks of these zones. In the sandstone of the Nabil zone, 75 % of the zircon grains are of the middle Cretaceous age (94–108 Ma) with a peak of 96 Ma, 15 % are the middle Permian-Early Jurassic, and 10 % are the Precambrian (mainly Paleoproterozoic). The sandstone of the Rymnik zone has a more complex (polymodal) pattern of the detrital zircon age distribution, with a significant contribution of the Precambrian grains (37 %). Most of the grains belong to the Early Jurassic (peak 196 Ma) and the Early Cretaceous (peak 137 Ma), with 47 % of the Mesozoic grains. The likely provenances of the clastic material were the Middle Cretaceous volcanic arcs of the Asian eastern margin older complexes of the continent.
{"title":"FIRST DETRITAL ZIRCON GEOCHRONOLOGY DATA FOR CLASTIC ROCKS OF THE EAST SAKHALIN ACCRETIONARY TERRANE","authors":"I. Alexandrov, V. Ivin, A. Malinovsky, S. Budnitskiy","doi":"10.5800/gt-2022-13-2s-0612","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0612","url":null,"abstract":"First detrital zircon geochronology data and results of geochemical studies for clastic rocks of the Rymnik and Nabil zones of the East Sakhalin accretionary terrane, located within the region of the East Sakhalin Mountains, are presented. The studies have been carried out at the Center for Collective Use of Far Eastern Geological Institute of the Far East Branch of the Russian Academy of Sciences in Vladivostok. The established geochemical features suggest that the source of the clastic material of the zones was felsic rocks of the deeply eroded continental island arc or arcs. Although the geochemical characteristics are similar, there are sharp differences between the detrital zircons’ age distribution patterns of rocks of these zones. In the sandstone of the Nabil zone, 75 % of the zircon grains are of the middle Cretaceous age (94–108 Ma) with a peak of 96 Ma, 15 % are the middle Permian-Early Jurassic, and 10 % are the Precambrian (mainly Paleoproterozoic). The sandstone of the Rymnik zone has a more complex (polymodal) pattern of the detrital zircon age distribution, with a significant contribution of the Precambrian grains (37 %). Most of the grains belong to the Early Jurassic (peak 196 Ma) and the Early Cretaceous (peak 137 Ma), with 47 % of the Mesozoic grains. The likely provenances of the clastic material were the Middle Cretaceous volcanic arcs of the Asian eastern margin older complexes of the continent.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81493850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2s-0632
S. Korol, A. Sankov, A. Dobrynina, V. Sankov
This paper proposes a method to observe the pre-earthquake features based on the variations in ambient noises using local moderate and strong seismic events as an example. Eight earthquakes in the Baikal rift system with energy classes K=10.1–15.9 were associated to a significant decrease in the level of ambient noises at epicentral distances from 3 to 81 km a few hours before the shock. The observed decrease in the ambient noise level can be classified as a short-term precursor of the medium consolidation 4–5 hours before the earthquake.
{"title":"AMBIENT SEISMIC NOISE VARIATIONS BEFORE EARTHQUAKES IN THE BAIKAL RIFT SYSTEM","authors":"S. Korol, A. Sankov, A. Dobrynina, V. Sankov","doi":"10.5800/gt-2022-13-2s-0632","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0632","url":null,"abstract":"This paper proposes a method to observe the pre-earthquake features based on the variations in ambient noises using local moderate and strong seismic events as an example. Eight earthquakes in the Baikal rift system with energy classes K=10.1–15.9 were associated to a significant decrease in the level of ambient noises at epicentral distances from 3 to 81 km a few hours before the shock. The observed decrease in the ambient noise level can be classified as a short-term precursor of the medium consolidation 4–5 hours before the earthquake.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76206798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2-0585
S. Skuzovatov, O. Belozerova, I. E. Vasil’eva, O. Zarubina, E. Kaneva, Yuliya V. Sokolnikova, V. Chubarov, E. Shabanova
Centre of Isotopic and Geochemical Research based on the Analytical Department of Vinogradov Institute of Geochemistry SB RAS (Irkutsk) performs a wide range of analytical studies to solve mineralogical and petrological, geochemical, prospecting, ecological, paleoclimatic and applied problems. The studies are supported by the modern equipment for electron microprobe, X-ray diffraction, X-ray fluorescence, atomic emission and mass spectrometric (including isotope) analyses, as well as the necessary international certified reference materials (SRM) and a collection of SRM of the natural and technogenic composition of our production.
{"title":"CENTRE OF ISOTOPIC AND GEOCHEMICAL RESEARCH (IGC SB RAS): CURRENT STATE OF MICRO- AND MACROANALYSIS","authors":"S. Skuzovatov, O. Belozerova, I. E. Vasil’eva, O. Zarubina, E. Kaneva, Yuliya V. Sokolnikova, V. Chubarov, E. Shabanova","doi":"10.5800/gt-2022-13-2-0585","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2-0585","url":null,"abstract":"Centre of Isotopic and Geochemical Research based on the Analytical Department of Vinogradov Institute of Geochemistry SB RAS (Irkutsk) performs a wide range of analytical studies to solve mineralogical and petrological, geochemical, prospecting, ecological, paleoclimatic and applied problems. The studies are supported by the modern equipment for electron microprobe, X-ray diffraction, X-ray fluorescence, atomic emission and mass spectrometric (including isotope) analyses, as well as the necessary international certified reference materials (SRM) and a collection of SRM of the natural and technogenic composition of our production.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90797873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-10DOI: 10.5800/gt-2022-13-2s-0595
R. Kravtsova, A. S. Makshakov, V. L. Tauso, O. Belozerova, V. Tatarinov
The distribution and speciation features of gold in ores and minerals of the Natalkinskoe gold deposit (North-East Russia) are studied using light microscopy (LM), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDX), X-ray electron probe microanalysis (EPMA), "phase" chemical analysis with atomic absorption spectrometry (PCA-AAS) and atomic absorption spectrometry with analytical data selections for single crystals (AAS-ADSSC). The vein and streaky-vein ores are high-grade ores, whereas veinlet-disseminated ores are less rich and disseminated ores are poor in gold. Up to 85 % of the gold in the ores is in a free native state, associated with quartz and sulfide minerals. LM, SEM-EDX and EPMA reveal that the predominant gold grains are 0.01 to 2.00 mm in size and at a fineness of 720 to 900 ‰. The finely dispersed and submicron elemental gold particles (Au0) amounted to 20 % and are mainly enclosed into arsenopyrite and pyrite. According to PCA-AAS data, the highest Au concentrations (up to 1383 ppm) are recorded in arsenopyrite; lower contents are typical of pyrite (up to 158.2 ppm). In these sulfides, two non-mineral species of "invisible" Au are the structurally bound and surface-bound species recognized by AAS-ADSSC. The structural Au is included in the mineral structure. The surface-bounded Au prevails and is confined to nano-sized, non-autonomous phases (NAPs) on the sulfide surface. In common with "invisible" Au, the micro-sized particles of native gold are often observed on the surface and within the surface layers of sulfide crystals. This is consistent with the model of post-growth transformations of nano-sized NAPs, resulting in the formation of nano and micro-sized Au0 particles. It is expected that the major part of gold contained in arsenopyrite and pyrite as finely dispersed and submicron particles, as well as the surface-bound gold in NAPs, can be won with modified current schemes of gold concentration, which enhances the value of the gold ore mining.
{"title":"SPECIATION FEATURES OF GOLD IN ORES AND MINERALS OF THE NATALKINSKOE DEPOSIT (NORTH-EAST RUSSIA)","authors":"R. Kravtsova, A. S. Makshakov, V. L. Tauso, O. Belozerova, V. Tatarinov","doi":"10.5800/gt-2022-13-2s-0595","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0595","url":null,"abstract":"The distribution and speciation features of gold in ores and minerals of the Natalkinskoe gold deposit (North-East Russia) are studied using light microscopy (LM), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDX), X-ray electron probe microanalysis (EPMA), \"phase\" chemical analysis with atomic absorption spectrometry (PCA-AAS) and atomic absorption spectrometry with analytical data selections for single crystals (AAS-ADSSC). The vein and streaky-vein ores are high-grade ores, whereas veinlet-disseminated ores are less rich and disseminated ores are poor in gold. Up to 85 % of the gold in the ores is in a free native state, associated with quartz and sulfide minerals. LM, SEM-EDX and EPMA reveal that the predominant gold grains are 0.01 to 2.00 mm in size and at a fineness of 720 to 900 ‰. The finely dispersed and submicron elemental gold particles (Au0) amounted to 20 % and are mainly enclosed into arsenopyrite and pyrite. According to PCA-AAS data, the highest Au concentrations (up to 1383 ppm) are recorded in arsenopyrite; lower contents are typical of pyrite (up to 158.2 ppm). In these sulfides, two non-mineral species of \"invisible\" Au are the structurally bound and surface-bound species recognized by AAS-ADSSC. The structural Au is included in the mineral structure. The surface-bounded Au prevails and is confined to nano-sized, non-autonomous phases (NAPs) on the sulfide surface. In common with \"invisible\" Au, the micro-sized particles of native gold are often observed on the surface and within the surface layers of sulfide crystals. This is consistent with the model of post-growth transformations of nano-sized NAPs, resulting in the formation of nano and micro-sized Au0 particles. It is expected that the major part of gold contained in arsenopyrite and pyrite as finely dispersed and submicron particles, as well as the surface-bound gold in NAPs, can be won with modified current schemes of gold concentration, which enhances the value of the gold ore mining.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85117209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-21DOI: 10.5800/gt-2022-13-2-0582
A. Ivanov, E. Demonterova, A. Revenko, I. Sharygin, E. Kozyreva, S. Alexeev
The article discusses the history of the development of analytical research at the Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences over the past 22 years. An overview of the existing scientific equipment, current analytical techniques and some examples of their application in geological research are provided. It is shown that the availability of highly qualified personnel and modern scientific equipment at the Center for Geodynamics and Geochronology allows, both entirely on its base and in cooperation with other Russian and foreign organizations, to conduct state of the art research with the publication of results in leading international journals.
{"title":"History and current state of analytical research at the Institute of the Earth’s Crust SB RAS: Centre for geodynamics and geochronology","authors":"A. Ivanov, E. Demonterova, A. Revenko, I. Sharygin, E. Kozyreva, S. Alexeev","doi":"10.5800/gt-2022-13-2-0582","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2-0582","url":null,"abstract":"The article discusses the history of the development of analytical research at the Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences over the past 22 years. An overview of the existing scientific equipment, current analytical techniques and some examples of their application in geological research are provided. It is shown that the availability of highly qualified personnel and modern scientific equipment at the Center for Geodynamics and Geochronology allows, both entirely on its base and in cooperation with other Russian and foreign organizations, to conduct state of the art research with the publication of results in leading international journals.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76257591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-21DOI: 10.5800/gt-2022-13-2s-0621
S. Alexeev, A. Gladkov, V. Pellinen, L. Alexeeva, A. A. Svetlakov
The results of ground-penetrating radar (GPR) studies of permafrost and aerial photography, carried out at key sites in the Sentsa River valley (Oka Plateau, Eastern Sayan Ridge), are presented.For geophysical studies, an OKO-2 GPR completed with an AB-90 shielded antenna unit was used with a maximum sounding depth of up to 20 m and a resolution of 0.5 m. To account for the landscape elevation, the Trimble TS635 tacheometer and the Leiсa DISTO D 510 rangefinder performed hypsometric measurements with a step of 1.0 m. Aerial photography was carried out by a remotely piloted aircraft (RPA) DJI Inspire 1 Pro, equipped with a Zenmuse 3X camera (a resolution of 3840×2160 pixels) with a spatial resolution of 5.7–7.8 cm/pixel (in different years).In the structure of frozen lacustrine-alluvial sediments, three GPR complexes are distinguished, corresponding to the active layer and frozen rocks with different amounts of schlieren, lenses and layers of texture-forming ice. The orthophoto map and tacheometric survey analysis showed that the destruction of frost mounds occurs from the second half of April to the first half of October. The most significant relief change is due to the thawing of icy pulverescent clayey silts. It leads to subsidence blocks in the ledge of the Sentsa River terrace. Lateral river thermoerosion also contributes to the frost mounds destruction.
{"title":"GPR surveys and RPA aerial photography using in conducting geocryological studies on the Oka plateau in the Eastern Sayan ridge","authors":"S. Alexeev, A. Gladkov, V. Pellinen, L. Alexeeva, A. A. Svetlakov","doi":"10.5800/gt-2022-13-2s-0621","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0621","url":null,"abstract":"The results of ground-penetrating radar (GPR) studies of permafrost and aerial photography, carried out at key sites in the Sentsa River valley (Oka Plateau, Eastern Sayan Ridge), are presented.For geophysical studies, an OKO-2 GPR completed with an AB-90 shielded antenna unit was used with a maximum sounding depth of up to 20 m and a resolution of 0.5 m. To account for the landscape elevation, the Trimble TS635 tacheometer and the Leiсa DISTO D 510 rangefinder performed hypsometric measurements with a step of 1.0 m. Aerial photography was carried out by a remotely piloted aircraft (RPA) DJI Inspire 1 Pro, equipped with a Zenmuse 3X camera (a resolution of 3840×2160 pixels) with a spatial resolution of 5.7–7.8 cm/pixel (in different years).In the structure of frozen lacustrine-alluvial sediments, three GPR complexes are distinguished, corresponding to the active layer and frozen rocks with different amounts of schlieren, lenses and layers of texture-forming ice. The orthophoto map and tacheometric survey analysis showed that the destruction of frost mounds occurs from the second half of April to the first half of October. The most significant relief change is due to the thawing of icy pulverescent clayey silts. It leads to subsidence blocks in the ledge of the Sentsa River terrace. Lateral river thermoerosion also contributes to the frost mounds destruction.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76058384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-21DOI: 10.5800/gt-2022-13-2s-0631
A. Seminsky
The purpose of this work is to analyze the variations of radon volumetric activity in groundwater from the South Angara region and to identify and study the response of the emanation field to the most significant seismic events that occurred in the Baikal region in 2021. To achieve this goal, we organized daily monitoring of the radioactivity of groundwater in the study area. The analysis of the obtained series made it possible to determine the amplitude of fluctuations of radon volumetric activity Q (from 13.2 to 48.4 Bq/L), as well as the average annual (26 Bq/L) and daily average (4.5 Bq/L) indicators.The total number of earthquakes that occurred during the year on the territory of the Baikal region yielded a sample of 40 most significant (M≥4) events, for which the radii of the areas of influence were calculated. In three cases, we found that the sampling points were located within the influence radii or close to it. In four cases, the actual distances from the monitoring points to the epicentres were one and a half to three times greater than the calculated radii, and in the rest thirty-three cases, these distances were more than three times greater than that.Three types of emanation responses to seismic events have been identified, with one of which to be recorded before an earthquake, that is, to be a prognostic sign. Among the earthquakes demonstrating this effect, the Khubsugul earthquake was the strongest in the study area over the past ten years. Grouping by distance from the source to the sampling point relative to the radius of the event’s influence practically coincides with the set of earthquakes by the recording time and the type of recorded responses.Thus, the fluctuations of the emanation field spread over considerable distances from the earthquake generation area with gradual attenuation, and the response recording moment and the type of anomaly that appeared on the graph depend on the power of an impending event, as well as on the distance between the earthquake epicentre and the sampling point. The study shows that the possibility of identifying the emanation precursor effects before strong earthquakes on the territory of the Baikal region is based on two primary conditions: first, sufficient strength of an impending earthquake; second, the location of the sampling point within the radius of the area of influence of this earthquake.
{"title":"Variations in radon concentrations in the underground waters during the generation and occurrence of seismic events in the Baikal region","authors":"A. Seminsky","doi":"10.5800/gt-2022-13-2s-0631","DOIUrl":"https://doi.org/10.5800/gt-2022-13-2s-0631","url":null,"abstract":"The purpose of this work is to analyze the variations of radon volumetric activity in groundwater from the South Angara region and to identify and study the response of the emanation field to the most significant seismic events that occurred in the Baikal region in 2021. To achieve this goal, we organized daily monitoring of the radioactivity of groundwater in the study area. The analysis of the obtained series made it possible to determine the amplitude of fluctuations of radon volumetric activity Q (from 13.2 to 48.4 Bq/L), as well as the average annual (26 Bq/L) and daily average (4.5 Bq/L) indicators.The total number of earthquakes that occurred during the year on the territory of the Baikal region yielded a sample of 40 most significant (M≥4) events, for which the radii of the areas of influence were calculated. In three cases, we found that the sampling points were located within the influence radii or close to it. In four cases, the actual distances from the monitoring points to the epicentres were one and a half to three times greater than the calculated radii, and in the rest thirty-three cases, these distances were more than three times greater than that.Three types of emanation responses to seismic events have been identified, with one of which to be recorded before an earthquake, that is, to be a prognostic sign. Among the earthquakes demonstrating this effect, the Khubsugul earthquake was the strongest in the study area over the past ten years. Grouping by distance from the source to the sampling point relative to the radius of the event’s influence practically coincides with the set of earthquakes by the recording time and the type of recorded responses.Thus, the fluctuations of the emanation field spread over considerable distances from the earthquake generation area with gradual attenuation, and the response recording moment and the type of anomaly that appeared on the graph depend on the power of an impending event, as well as on the distance between the earthquake epicentre and the sampling point. The study shows that the possibility of identifying the emanation precursor effects before strong earthquakes on the territory of the Baikal region is based on two primary conditions: first, sufficient strength of an impending earthquake; second, the location of the sampling point within the radius of the area of influence of this earthquake.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81270016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.5800/gt-2021-12-4-0566
K. Seminsky, Yu.P. Burzunova, A. I. Miroshnichenko, S. Bornyakov, A. Nezhdanov, A. Ershov, A. Smirnov, I. Buddo, A. Seminsky, A. Cheremnykh, I. V. Kachinskas
The study was aimed to identify the features of the formation and regularities of manifestation of faults in the platform environment applying the tectonophysical approach to the study of the structure of the Tambey hydrocarbon deposit (northern Yamal), largest in the West Siberia. Such research is important in the oil and gas industry at the present stage of transition from the exploitation of declining unique and large deposits to exploration and exploitation of deposits of complex structure. The tectonophysical approach was applied consistently in three levels of research. Initial consideration was given to regular trends in the structure of the platform cover in the context of general tectonophysical ideas of disjunctive faults, their inner structure and formation features. Then, the identification of a network of large fault zones has been done at the regional level for the northern Yamal on the basis of the lineament analysis of the relief and optical modeling, three main stages of its formation have been reconstructed, and there have been identified the features of the state of stress, among other factors determining the Tambey deposit contours in three areas – western and northern Tambey and Tasyi. Finally, based on tectonophysical interpretation of 3D seismic attribute analysis data and elastoplastic modeling experiment results, for the northern Tambey area at the local level there were identified the faults zones, the features of their structures in rheologically stratified unit, and the paragenetic relationship with the regional-level structures. The study has shown that the structure of the sedimentary cover, whose formation is tectonically influenced by the adjacent mobile belts, is zone-block. It reflects the zone-block structure of the basement, though, in contrast, is not represented by narrow main-fault planes (1st-order faults). The blocks in the cover contact along rather wide zones, the inner structure of which corresponds to the early stages of faulting and is represented by a dense network of the 2nd-order fractures and faults. The fault zones are characterized by an inhomogeneous – segment – structure which is determined by an initially irregular development of deformations and complicated by rheological stratification of the sedimentary cover. Fault segments in relatively brittle rocks (sandstones) are composed of long faults whereas in more ductile (clayey) varieties these are wide parts of concentration of small faults and fractures. A style of the zone-block structure and the types of dynamic environments of its formation might be specific in different regions. The application of tectonophysical approach to the analysis of the geological-geophysical information, obtained for certain deposits, will make it possible to identify the structural conditions for hydrocarbon accumulation and migration in the sedimentary cover which is essential to choose an effective method of deposit exploitation.
{"title":"THE DISTINQUISHING FEATURES OF THE FAULTS IN THE PLATFORM COVER: RESULTS OF THE APPLICATION OF TECTONOPHYSICAL APPROACH TO THE STUDY OF THE TAMBEY HYDROCARBON DEPOSIT (YAMAL PENINSULAR)","authors":"K. Seminsky, Yu.P. Burzunova, A. I. Miroshnichenko, S. Bornyakov, A. Nezhdanov, A. Ershov, A. Smirnov, I. Buddo, A. Seminsky, A. Cheremnykh, I. V. Kachinskas","doi":"10.5800/gt-2021-12-4-0566","DOIUrl":"https://doi.org/10.5800/gt-2021-12-4-0566","url":null,"abstract":"The study was aimed to identify the features of the formation and regularities of manifestation of faults in the platform environment applying the tectonophysical approach to the study of the structure of the Tambey hydrocarbon deposit (northern Yamal), largest in the West Siberia. Such research is important in the oil and gas industry at the present stage of transition from the exploitation of declining unique and large deposits to exploration and exploitation of deposits of complex structure. The tectonophysical approach was applied consistently in three levels of research. Initial consideration was given to regular trends in the structure of the platform cover in the context of general tectonophysical ideas of disjunctive faults, their inner structure and formation features. Then, the identification of a network of large fault zones has been done at the regional level for the northern Yamal on the basis of the lineament analysis of the relief and optical modeling, three main stages of its formation have been reconstructed, and there have been identified the features of the state of stress, among other factors determining the Tambey deposit contours in three areas – western and northern Tambey and Tasyi. Finally, based on tectonophysical interpretation of 3D seismic attribute analysis data and elastoplastic modeling experiment results, for the northern Tambey area at the local level there were identified the faults zones, the features of their structures in rheologically stratified unit, and the paragenetic relationship with the regional-level structures. The study has shown that the structure of the sedimentary cover, whose formation is tectonically influenced by the adjacent mobile belts, is zone-block. It reflects the zone-block structure of the basement, though, in contrast, is not represented by narrow main-fault planes (1st-order faults). The blocks in the cover contact along rather wide zones, the inner structure of which corresponds to the early stages of faulting and is represented by a dense network of the 2nd-order fractures and faults. The fault zones are characterized by an inhomogeneous – segment – structure which is determined by an initially irregular development of deformations and complicated by rheological stratification of the sedimentary cover. Fault segments in relatively brittle rocks (sandstones) are composed of long faults whereas in more ductile (clayey) varieties these are wide parts of concentration of small faults and fractures. A style of the zone-block structure and the types of dynamic environments of its formation might be specific in different regions. The application of tectonophysical approach to the analysis of the geological-geophysical information, obtained for certain deposits, will make it possible to identify the structural conditions for hydrocarbon accumulation and migration in the sedimentary cover which is essential to choose an effective method of deposit exploitation.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79142116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}