{"title":"Efficient temporal shortest path queries on evolving social graphs","authors":"Wenyu Huo, V. Tsotras","doi":"10.1145/2618243.2618282","DOIUrl":null,"url":null,"abstract":"Graph-like data appears in many applications, such as social networks, internet hyperlinks, roadmaps, etc. and in most cases, graphs are dynamic, evolving through time. In this work, we study the problem of efficient shortest-path query evaluation on evolving social graphs. Our shortest-path queries are \"temporal\": they can refer to any time-point or time-interval in the graph's evolution, and corresponding valid answers should be returned. To efficiently support this type of temporal query, we extend the traditional Dijkstra's algorithm to compute shortest-path distance(s) for a time-point or a time-interval. To speed up query processing, we explore preprocessing index techniques such as Contraction Hierarchies (CH). Moreover, we examine how to maintain the evolving graph along with the index by utilizing temporal partition strategies. Experimental evaluations on real world datasets and large synthetic datasets demonstrate the feasibility and scalability of our proposed efficient techniques and optimizations.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"2 1","pages":"38:1-38:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Graph-like data appears in many applications, such as social networks, internet hyperlinks, roadmaps, etc. and in most cases, graphs are dynamic, evolving through time. In this work, we study the problem of efficient shortest-path query evaluation on evolving social graphs. Our shortest-path queries are "temporal": they can refer to any time-point or time-interval in the graph's evolution, and corresponding valid answers should be returned. To efficiently support this type of temporal query, we extend the traditional Dijkstra's algorithm to compute shortest-path distance(s) for a time-point or a time-interval. To speed up query processing, we explore preprocessing index techniques such as Contraction Hierarchies (CH). Moreover, we examine how to maintain the evolving graph along with the index by utilizing temporal partition strategies. Experimental evaluations on real world datasets and large synthetic datasets demonstrate the feasibility and scalability of our proposed efficient techniques and optimizations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演化社会图的有效时间最短路径查询
类似图形的数据出现在许多应用程序中,如社交网络、互联网超链接、路线图等,在大多数情况下,图形是动态的,随着时间的推移而演变。在这项工作中,我们研究了进化社会图的有效最短路径查询评估问题。我们的最短路径查询是“暂时的”:它们可以引用图演化中的任何时间点或时间间隔,并且应该返回相应的有效答案。为了有效地支持这种类型的时间查询,我们扩展了传统的Dijkstra算法来计算时间点或时间间隔的最短路径距离(s)。为了加速查询处理,我们探索了预处理索引技术,如收缩层次结构(CH)。此外,我们还研究了如何利用时间分区策略来维护随索引变化的图。在真实世界数据集和大型合成数据集上的实验评估证明了我们提出的高效技术和优化的可行性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1