Feature Curve Network Extraction via Quadric Surface Fitting

Z. Li, Jianwei Guo, Jun Xiao, Ying Wang, Xiaopeng Zhang, Dong‐Ming Yan
{"title":"Feature Curve Network Extraction via Quadric Surface Fitting","authors":"Z. Li, Jianwei Guo, Jun Xiao, Ying Wang, Xiaopeng Zhang, Dong‐Ming Yan","doi":"10.2312/PG.20191338","DOIUrl":null,"url":null,"abstract":"Feature curves on 3D shapes provide a high dimensional representation of the geometry and reveal their underlying structure. In this paper, we present an automatic approach for extracting complete feature curve networks from 3D models, as well as generating a high-quality patch layout. Starting from an initial collection of noisy and fragmented feature curves, we first filter non-salient or noisy feature curves by utilizing a quadric surface fitting technique. We then handle the curve intersections and curve missing by conducting a feature extension step to form a closed feature curve network. Finally, we generate a patch layout to reveal a highly structured representation of the input surfaces. Experimental results demonstrate that our algorithm is robust for extracting complete feature curve networks from complex input meshes and achieves superior quality patch layouts compared with the state-of-the-art approaches. CCS Concepts • Computing methodologies → Shape analysis; Mesh models;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"37 1","pages":"47-52"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20191338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Feature curves on 3D shapes provide a high dimensional representation of the geometry and reveal their underlying structure. In this paper, we present an automatic approach for extracting complete feature curve networks from 3D models, as well as generating a high-quality patch layout. Starting from an initial collection of noisy and fragmented feature curves, we first filter non-salient or noisy feature curves by utilizing a quadric surface fitting technique. We then handle the curve intersections and curve missing by conducting a feature extension step to form a closed feature curve network. Finally, we generate a patch layout to reveal a highly structured representation of the input surfaces. Experimental results demonstrate that our algorithm is robust for extracting complete feature curve networks from complex input meshes and achieves superior quality patch layouts compared with the state-of-the-art approaches. CCS Concepts • Computing methodologies → Shape analysis; Mesh models;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二次曲面拟合的特征曲线网络提取
三维形状的特征曲线提供了几何图形的高维表示,并揭示了其底层结构。在本文中,我们提出了一种从3D模型中自动提取完整特征曲线网络并生成高质量补丁布局的方法。从噪声和碎片化特征曲线的初始集合开始,我们首先利用二次曲面拟合技术过滤非显著或噪声特征曲线。然后通过特征扩展步骤处理曲线相交和曲线缺失,形成封闭的特征曲线网络。最后,我们生成一个补丁布局,以显示输入表面的高度结构化表示。实验结果表明,我们的算法对于从复杂的输入网格中提取完整的特征曲线网络具有鲁棒性,并且与目前的方法相比,可以获得更高质量的斑块布局。•计算方法→形状分析;网格模型;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1