Sibling rivalry within inverse Weibull family to predict the COVID-19 spread in South Africa

Farzane Hashemi, A. Bekker, Kirsten Smith, M. Arashi
{"title":"Sibling rivalry within inverse Weibull family to predict the COVID-19 spread in South Africa","authors":"Farzane Hashemi, A. Bekker, Kirsten Smith, M. Arashi","doi":"10.1080/23737484.2021.1979433","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article draws attention to a comparative study of different members within the inverse Weibull Power Series (IWPS) to analyze the COVID-19 data from South Africa for the period from 27 March to 23 August 2020. A new sibling of the IWPS is introduced, namely the inverse Weibull negative binomial. An EM algorithm is developed for computing the maximum likelihood estimates of the model parameters. The IWPS growth curve model and its special cases are used for prediction of the COVID-19 spread in South Africa. It is found that the IWPS model fits the disease growth of the COVID-19 confirmed cases well with worthy long-term predictions. The IWPS growth curve modeling of South African predicts that the number of confirmed new cases will decrease at the end of November 2020.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"33 1","pages":"119 - 132"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1979433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This article draws attention to a comparative study of different members within the inverse Weibull Power Series (IWPS) to analyze the COVID-19 data from South Africa for the period from 27 March to 23 August 2020. A new sibling of the IWPS is introduced, namely the inverse Weibull negative binomial. An EM algorithm is developed for computing the maximum likelihood estimates of the model parameters. The IWPS growth curve model and its special cases are used for prediction of the COVID-19 spread in South Africa. It is found that the IWPS model fits the disease growth of the COVID-19 confirmed cases well with worthy long-term predictions. The IWPS growth curve modeling of South African predicts that the number of confirmed new cases will decrease at the end of November 2020.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逆威布尔家族内的兄弟姐妹竞争预测COVID-19在南非的传播
本文对逆威布尔幂级数(IWPS)中的不同成员进行了比较研究,以分析2020年3月27日至8月23日期间南非的COVID-19数据。引入了IWPS的一个新兄弟,即逆威布尔负二项式。提出了一种计算模型参数最大似然估计的电磁算法。利用IWPS增长曲线模型及其特殊情况预测了2019冠状病毒病在南非的传播。结果表明,IWPS模型能较好地拟合新冠肺炎确诊病例的疾病增长,具有较好的长期预测价值。南非IWPS增长曲线模型预测,到2020年11月底,新确诊病例数量将减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1