A comparative study of corporate credit ratings prediction with machine learning

IF 0.7 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research and Decisions Pub Date : 2022-01-01 DOI:10.37190/ord220102
Seyyide Doğan, Yasin Büyükkör, Murat Atan
{"title":"A comparative study of corporate credit ratings prediction with machine learning","authors":"Seyyide Doğan, Yasin Büyükkör, Murat Atan","doi":"10.37190/ord220102","DOIUrl":null,"url":null,"abstract":"Credit scores are critical for financial sector investors and government officials, so it is important to develop reliable, transparent and appropriate tools for obtaining ratings. This study aims to predict company credit scores with machine learning and modern statistical methods, both in sectoral and aggregated data. Analyses are made on 1881 companies operating in three different sectors that applied for loans from Turkey’s largest public bank. The results of the experiment are compared in terms of classification accuracy, sensitivity, specificity, precision and Mathews correlation coefficient. When the credit ratings are estimated on a sectoral basis, it is observed that the classification rate considerably changes. Considering the analysis results, it is seen that logistic regression analysis, support vector machines, random forest and XGBoost have better performance than decision tree and k-nearest neighbour for all data sets.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":"391 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord220102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Credit scores are critical for financial sector investors and government officials, so it is important to develop reliable, transparent and appropriate tools for obtaining ratings. This study aims to predict company credit scores with machine learning and modern statistical methods, both in sectoral and aggregated data. Analyses are made on 1881 companies operating in three different sectors that applied for loans from Turkey’s largest public bank. The results of the experiment are compared in terms of classification accuracy, sensitivity, specificity, precision and Mathews correlation coefficient. When the credit ratings are estimated on a sectoral basis, it is observed that the classification rate considerably changes. Considering the analysis results, it is seen that logistic regression analysis, support vector machines, random forest and XGBoost have better performance than decision tree and k-nearest neighbour for all data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
企业信用评级预测与机器学习的比较研究
信用评分对金融部门投资者和政府官员至关重要,因此开发可靠、透明和适当的评级工具非常重要。本研究旨在用机器学习和现代统计方法预测公司信用评分,包括部门和汇总数据。该研究分析了1881家向土耳其最大的公共银行申请贷款的公司,这些公司分布在三个不同的行业。实验结果在分类准确率、灵敏度、特异度、精密度和马修斯相关系数等方面进行了比较。在按部门估计信用等级时,可以观察到分类率有很大变化。从分析结果来看,对于所有数据集,逻辑回归分析、支持向量机、随机森林和XGBoost的性能都优于决策树和k近邻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research and Decisions
Operations Research and Decisions OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
1.00
自引率
25.00%
发文量
16
审稿时长
15 weeks
期刊最新文献
The use of rank and optimisation methods in strategic management in higher education Frequentist inference on traffic intensity of M/M/1 queuing system Some equations to identify the threshold value in the DEMATEL method Characterisation of some generalized continuous distributions by doubly truncated moments Relationship marketing orientation in healthcare organisations with the AHP. Internal and external customer perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1