{"title":"Evaluation HSE of a LSF system subject to near- and far-field earthquakes","authors":"Hossein Mirzaaghabeik, Hamid Reza Vosoughifar","doi":"10.1016/j.psra.2015.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>The Lightweight Steel Framing (LSF) system has been proposed as an economical and earthquake resistant system. Due to the lightweight nature of LSF structures, the seismic performance of middle-rise buildings has been improved. Currently, various numerical-analytical methods have been proposed for seismic assessment of conventional structures. Providing a perfect seismic Health Safety Environment (HSE) index has always been regarded as one of the analytical passive points. In this research, an LSF building was selected as a case study for Finite Element (FE) modelling, in which non-linear time-history analyses were undertaken. Material properties were defined according to the performed experimental studies. A novel approach was presented for the seismic HSE index of LSF systems using the simultaneous incorporation of the non-linear analysis results and the correction coefficient describing the seismic geotechnical effects. The presented seismic HSE index accurately demonstrates the seismic performance of the LSF structures. Additionally, a two-layer perceptron Artificial Neural Network (ANN) was trained using the results of the FE model, and a non-linear relationship was obtained to predict the seismic damage index. Finally, the proposed seismic HSE index was validated using statistical analyses, indicating that the proposed method does not yield a significant difference compared to the ANN results.</p></div>","PeriodicalId":100999,"journal":{"name":"Pacific Science Review A: Natural Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.psra.2015.11.007","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Science Review A: Natural Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405882315000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The Lightweight Steel Framing (LSF) system has been proposed as an economical and earthquake resistant system. Due to the lightweight nature of LSF structures, the seismic performance of middle-rise buildings has been improved. Currently, various numerical-analytical methods have been proposed for seismic assessment of conventional structures. Providing a perfect seismic Health Safety Environment (HSE) index has always been regarded as one of the analytical passive points. In this research, an LSF building was selected as a case study for Finite Element (FE) modelling, in which non-linear time-history analyses were undertaken. Material properties were defined according to the performed experimental studies. A novel approach was presented for the seismic HSE index of LSF systems using the simultaneous incorporation of the non-linear analysis results and the correction coefficient describing the seismic geotechnical effects. The presented seismic HSE index accurately demonstrates the seismic performance of the LSF structures. Additionally, a two-layer perceptron Artificial Neural Network (ANN) was trained using the results of the FE model, and a non-linear relationship was obtained to predict the seismic damage index. Finally, the proposed seismic HSE index was validated using statistical analyses, indicating that the proposed method does not yield a significant difference compared to the ANN results.