Switching latent factor value-at-risk models for conditionally heteroskedastic portfolios: A comparative approach

Mohamed Saidane
{"title":"Switching latent factor value-at-risk models for conditionally heteroskedastic portfolios: A comparative approach","authors":"Mohamed Saidane","doi":"10.1080/23737484.2022.2031346","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a computationally efficient Monte Carlo-based latent factor modeling approach for portfolio Value-at-Risk (VaR) estimation is introduced. We examine whether the inclusion of conditional heteroskedasticity in financial returns, and taking into account for possible hidden (Markovian) “regime changes” in the latent correlation structure of the portfolio can enhance the accuracy of VaR forecasts. Practical details of training such models with the expectation-maximization algorithm are also discussed. In conjunction with an approximated version of the Kalman filter, we show how to calculate maximum likelihood estimates of the model parameters, and to yield inferences about the unobservable path of the common factors, their volatilities and the hidden state sequence of the Markov process. The methodology is illustrated by an example using data from the Tunisian foreign exchange market, over the period of the Tunisian revolution from January 02, 2010 to December 30, 2012. We found that this new specification exhibits a good fit to the data, improves the accuracy of VaR predictions of the Tunisian foreign public debt portfolio and reduces the number and average size of back-testing breaches when a financial crisis occurs.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"32 1","pages":"282 - 307"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2031346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, a computationally efficient Monte Carlo-based latent factor modeling approach for portfolio Value-at-Risk (VaR) estimation is introduced. We examine whether the inclusion of conditional heteroskedasticity in financial returns, and taking into account for possible hidden (Markovian) “regime changes” in the latent correlation structure of the portfolio can enhance the accuracy of VaR forecasts. Practical details of training such models with the expectation-maximization algorithm are also discussed. In conjunction with an approximated version of the Kalman filter, we show how to calculate maximum likelihood estimates of the model parameters, and to yield inferences about the unobservable path of the common factors, their volatilities and the hidden state sequence of the Markov process. The methodology is illustrated by an example using data from the Tunisian foreign exchange market, over the period of the Tunisian revolution from January 02, 2010 to December 30, 2012. We found that this new specification exhibits a good fit to the data, improves the accuracy of VaR predictions of the Tunisian foreign public debt portfolio and reduces the number and average size of back-testing breaches when a financial crisis occurs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件异方差投资组合的转换潜在因子风险价值模型:比较方法
摘要本文介绍了一种计算效率高的基于蒙特卡罗的投资组合风险价值(VaR)估计的潜在因素建模方法。我们研究了在财务回报中包含条件异方差,并考虑到投资组合潜在相关结构中可能隐藏的(马尔可夫)“制度变化”是否可以提高VaR预测的准确性。本文还讨论了用期望最大化算法训练这类模型的实际细节。结合近似版本的卡尔曼滤波器,我们展示了如何计算模型参数的最大似然估计,并产生关于共同因素的不可观察路径的推断,它们的波动性和马尔可夫过程的隐藏状态序列。本文以突尼斯外汇市场数据为例,对突尼斯革命期间(2010年1月2日至2012年12月30日)的方法进行了说明。我们发现,这一新规范与数据吻合良好,提高了突尼斯外国公共债务组合VaR预测的准确性,并减少了金融危机发生时回验违规的数量和平均规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1