Data-Driven Prediction of In-Situ Combustion Dynamics

O. Ogunbanwo, Kuy Hun Koh Yoo, M. Gerritsen, A. Kovscek
{"title":"Data-Driven Prediction of In-Situ Combustion Dynamics","authors":"O. Ogunbanwo, Kuy Hun Koh Yoo, M. Gerritsen, A. Kovscek","doi":"10.2118/191457-MS","DOIUrl":null,"url":null,"abstract":"\n This paper presents a new workflow for the simulation of in-situ combustion (ISC) dynamics. In the proposed method, data from kinetic cell experiments, depicting the combustion chemistry, are tabulated and graphed based on the isoconversional principle. The tables hold the reaction rates used to predict the production and consumption of chemical species during in-situ combustion.\n This new method of representing kinetics without the Arrhenius method is applied on one synthetic and two real kinetic cell experiments. In each case, the new method reasonably captures the reaction pathways taken by the reacting species as the combustive process occurs. A data-density sensitivity study on the tabulated rates for the real case shows that only four experiments are required to capture adequately the kinetics of the combustion process. The results are, however, found to be sensitive to the size of the time step taken. The method predicts critical changes in the reaction rates as the experiment is exposed to different temperature conditions, thereby capturing the speed of the combustion front, temperature profile, and fluid compositions of a simulated combustion tube experiment.\n The direct use of the data ensures flexibility of the reaction rates with time and temperature. In addition, the non-Arrhenius kinetics technique eliminates the need for a descriptive reaction scheme that is typically computationally demanding, and instead focuses on the overall changes in the carbon oxides, oil, water and heat occurring at any time. Significantly, less tuning of parameters is required to match laboratory experiments because laboratory observations are easier to enforce.","PeriodicalId":11015,"journal":{"name":"Day 1 Mon, September 24, 2018","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 24, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191457-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new workflow for the simulation of in-situ combustion (ISC) dynamics. In the proposed method, data from kinetic cell experiments, depicting the combustion chemistry, are tabulated and graphed based on the isoconversional principle. The tables hold the reaction rates used to predict the production and consumption of chemical species during in-situ combustion. This new method of representing kinetics without the Arrhenius method is applied on one synthetic and two real kinetic cell experiments. In each case, the new method reasonably captures the reaction pathways taken by the reacting species as the combustive process occurs. A data-density sensitivity study on the tabulated rates for the real case shows that only four experiments are required to capture adequately the kinetics of the combustion process. The results are, however, found to be sensitive to the size of the time step taken. The method predicts critical changes in the reaction rates as the experiment is exposed to different temperature conditions, thereby capturing the speed of the combustion front, temperature profile, and fluid compositions of a simulated combustion tube experiment. The direct use of the data ensures flexibility of the reaction rates with time and temperature. In addition, the non-Arrhenius kinetics technique eliminates the need for a descriptive reaction scheme that is typically computationally demanding, and instead focuses on the overall changes in the carbon oxides, oil, water and heat occurring at any time. Significantly, less tuning of parameters is required to match laboratory experiments because laboratory observations are easier to enforce.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的原位燃烧动力学预测
本文提出了一种新的原位燃烧动力学模拟工作流程。在该方法中,根据等转换原理,将描述燃烧化学的动力电池实验数据制成表格和图表。表格中列出了用于预测原位燃烧过程中化学物质产生和消耗的反应速率。将这种不采用阿伦尼乌斯法表示动力学的新方法应用于一个合成实验和两个实际的动力学细胞实验。在每一种情况下,新方法都合理地捕获了反应物质在燃烧过程中所采取的反应途径。对实际情况的表列速率的数据密度灵敏度研究表明,只需要四个实验就可以充分捕捉到燃烧过程的动力学。然而,发现结果对所采取的时间步长很敏感。该方法预测了实验在不同温度条件下反应速率的关键变化,从而捕获了模拟燃烧管实验的燃烧前沿速度、温度分布和流体组成。数据的直接使用保证了反应速率随时间和温度的灵活性。此外,非阿伦尼乌斯动力学技术消除了对通常计算要求很高的描述性反应方案的需要,而是专注于任何时候发生的碳氧化物、油、水和热的整体变化。值得注意的是,较少的参数调整需要匹配实验室实验,因为实验室观察更容易执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulatory and sustainability initiatives lead to improved polyaminopolyamide epichlorohydrin (PAE) wet-strength resins and paper products Rewet in wet pressing of paper Mineral/microfibrillated cellulose composite materials: High performance products, applications, and product forms Challenges and Lessons Learned During Completion of Intelligent Multilateral Wells in Minagish Field, West Kuwait Asphaltene Studies in On-Shore Abu Dhabi Fields, Part IV: Development of a Surface Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1