{"title":"A kinematic search for supernova remnants in giant extragalactic H II regions","authors":"Hui Yang, E. Skillman, R. Sramek","doi":"10.1086/116885","DOIUrl":null,"url":null,"abstract":"We have obtained velocity fields of the Giant H II complexes NGC 5471 in M101, NGC 2363 in NGC 2366, and the largest H II region in NGC 2403 from H-alpha observations using the TAURUS imaging Fabry-Perot interferometer. We have detected five H-alpha sources with velocity profiles which are broad when compared with the surrounding H II region. Region B in NGC 5471 has been previously determined to contain a supernova remnant by the presence of nonthermal radio continuum radiation and enhanced (O I) and (S II) emission (Skillman 1985) and broad H-alpha emission (Chu & Kennicutt 1986). Two broad H-alpha sources in NGC 2363 coincide with regions where strong splitting has been found in the (O III) line (Roy et al. 1991). Two more broad H-alpha sources have been identified in the largest H II region in NGC 2403. Very Large Array (VLA) radio continuum observations with a resolution of 2 sec at lambda(6) and lambda(20) cm of all 3 H II complexes are presented. In addition, high resolution (subarcsecond) VLA images of NGC 5471 were made at lambda(2) and lambda(6) cm. The presence of a nonthermal source in region NGC 5471 B was confirmed while region NGC 5471 A appears to be dominated by thermal emission. The nonthermal spectral index in NGC 2363 A indicates the existence of none or more supernova remnants at the position of a large velocity width source detected in H-alpha emission. No similar nonthermal sources were detected in NGC 2403 #1. Supernovae explosions and stellar winds are considered as causes for these large velocity width sources (LVWS). If the emission from the LVWSs is attributed to single supernova remnants, they are unusually luminous in both nonthermal radio continuum and H-alpha emision. The very large H-alpha luminosities could be a result of high velocity gas being ionized by the neighboring stellar cluster.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"86 1","pages":"1410"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/116885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We have obtained velocity fields of the Giant H II complexes NGC 5471 in M101, NGC 2363 in NGC 2366, and the largest H II region in NGC 2403 from H-alpha observations using the TAURUS imaging Fabry-Perot interferometer. We have detected five H-alpha sources with velocity profiles which are broad when compared with the surrounding H II region. Region B in NGC 5471 has been previously determined to contain a supernova remnant by the presence of nonthermal radio continuum radiation and enhanced (O I) and (S II) emission (Skillman 1985) and broad H-alpha emission (Chu & Kennicutt 1986). Two broad H-alpha sources in NGC 2363 coincide with regions where strong splitting has been found in the (O III) line (Roy et al. 1991). Two more broad H-alpha sources have been identified in the largest H II region in NGC 2403. Very Large Array (VLA) radio continuum observations with a resolution of 2 sec at lambda(6) and lambda(20) cm of all 3 H II complexes are presented. In addition, high resolution (subarcsecond) VLA images of NGC 5471 were made at lambda(2) and lambda(6) cm. The presence of a nonthermal source in region NGC 5471 B was confirmed while region NGC 5471 A appears to be dominated by thermal emission. The nonthermal spectral index in NGC 2363 A indicates the existence of none or more supernova remnants at the position of a large velocity width source detected in H-alpha emission. No similar nonthermal sources were detected in NGC 2403 #1. Supernovae explosions and stellar winds are considered as causes for these large velocity width sources (LVWS). If the emission from the LVWSs is attributed to single supernova remnants, they are unusually luminous in both nonthermal radio continuum and H-alpha emision. The very large H-alpha luminosities could be a result of high velocity gas being ionized by the neighboring stellar cluster.