Semi-Automated Segmentation of Glioblastomas in Brain MRI Using Machine Learning Techniques

Naomi Joseph, Parita Sanghani, Hongliang Ren
{"title":"Semi-Automated Segmentation of Glioblastomas in Brain MRI Using Machine Learning Techniques","authors":"Naomi Joseph, Parita Sanghani, Hongliang Ren","doi":"10.1109/ICMLA.2017.00017","DOIUrl":null,"url":null,"abstract":"Glioblastomas (GBMs) are cancerous brain tumors that require careful and intricate analysis for surgical planning. Physicians employ Magnetic Resonance Imaging (MRI) in order to diagnose glioblastomas. The segmentation of the tumor is a crucial step in surgical planning. Clinicians manually segment the tumor voxel-by-voxel; however, this is very time consuming. Hence, extensive research has been conducted to semi-automate and fully-automate this segmentation process. This project explores manual segmentation and utilizes k-means clustering technique for semi-automated segmentation. The accuracy of the k-means clustering segmentation was measured using the Dice Coefficient (DC). The results show that k-means clustering provides high accuracy for the segmentation of the enhanced region of tumor (which appears bright in the T1 post contrast MR image) and hence, it can be efficiently used to speed up manual segmentation.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"231 1","pages":"1149-1152"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Glioblastomas (GBMs) are cancerous brain tumors that require careful and intricate analysis for surgical planning. Physicians employ Magnetic Resonance Imaging (MRI) in order to diagnose glioblastomas. The segmentation of the tumor is a crucial step in surgical planning. Clinicians manually segment the tumor voxel-by-voxel; however, this is very time consuming. Hence, extensive research has been conducted to semi-automate and fully-automate this segmentation process. This project explores manual segmentation and utilizes k-means clustering technique for semi-automated segmentation. The accuracy of the k-means clustering segmentation was measured using the Dice Coefficient (DC). The results show that k-means clustering provides high accuracy for the segmentation of the enhanced region of tumor (which appears bright in the T1 post contrast MR image) and hence, it can be efficiently used to speed up manual segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术对脑MRI中胶质母细胞瘤进行半自动分割
胶质母细胞瘤(GBMs)是一种恶性脑肿瘤,需要仔细和复杂的分析来制定手术计划。医生使用磁共振成像(MRI)来诊断胶质母细胞瘤。肿瘤的分割是手术计划的关键步骤。临床医生手动分割肿瘤体素;然而,这非常耗时。因此,广泛的研究已经进行了半自动化和全自动的分割过程。本项目探索人工分割,并利用k-均值聚类技术进行半自动分割。使用Dice Coefficient (DC)来衡量k-means聚类分割的准确性。结果表明,k-means聚类对于肿瘤增强区域(在T1后对比MR图像中呈现明亮)的分割具有较高的准确性,因此可以有效地用于加速人工分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1