Informative Language Representation Learning for Massively Multilingual Neural Machine Translation

Renren Jin, Deyi Xiong
{"title":"Informative Language Representation Learning for Massively Multilingual Neural Machine Translation","authors":"Renren Jin, Deyi Xiong","doi":"10.48550/arXiv.2209.01530","DOIUrl":null,"url":null,"abstract":"In a multilingual neural machine translation model that fully shares parameters across all languages, an artificial language token is usually used to guide translation into the desired target language. However, recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions, especially on zero-shot translation. To mitigate this issue, we propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions. The former embodies language embeddings into different critical switching points along the information flow from the source to the target, aiming at amplifying translation direction guiding signals. The latter exploits a matrix, instead of a vector, to represent a language in the continuous space. The matrix is chunked into multiple heads so as to learn language representations in multiple subspaces. Experiment results on two datasets for massively multilingual neural machine translation demonstrate that language-aware multi-head attention benefits both supervised and zero-shot translation and significantly alleviates the off-target translation issue. Further linguistic typology prediction experiments show that matrix-based language representations learned by our methods are capable of capturing rich linguistic typology features.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"24 1","pages":"5158-5174"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In a multilingual neural machine translation model that fully shares parameters across all languages, an artificial language token is usually used to guide translation into the desired target language. However, recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions, especially on zero-shot translation. To mitigate this issue, we propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions. The former embodies language embeddings into different critical switching points along the information flow from the source to the target, aiming at amplifying translation direction guiding signals. The latter exploits a matrix, instead of a vector, to represent a language in the continuous space. The matrix is chunked into multiple heads so as to learn language representations in multiple subspaces. Experiment results on two datasets for massively multilingual neural machine translation demonstrate that language-aware multi-head attention benefits both supervised and zero-shot translation and significantly alleviates the off-target translation issue. Further linguistic typology prediction experiments show that matrix-based language representations learned by our methods are capable of capturing rich linguistic typology features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模多语言神经机器翻译的信息语言表示学习
在跨所有语言完全共享参数的多语言神经机器翻译模型中,通常使用人工语言标记来引导翻译到所需的目标语言。然而,最近的研究表明,前置语言标记有时不能将多语言神经机器翻译模型引导到正确的翻译方向,特别是在零采样翻译时。为了解决这一问题,我们提出了语言嵌入体现和语言感知多头注意两种方法来学习信息语言表征,从而引导翻译朝着正确的方向发展。前者将语言嵌入到从源语到译语的信息流中不同的关键切换点,目的是放大翻译方向的引导信号。后者利用矩阵而不是向量来表示连续空间中的语言。该矩阵被分块成多个头,以便在多个子空间中学习语言表示。在两个大规模多语言神经机器翻译数据集上的实验结果表明,语言感知多头注意既有利于监督翻译,又有利于零射击翻译,显著缓解了脱靶翻译问题。进一步的语言类型学预测实验表明,通过我们的方法学习的基于矩阵的语言表示能够捕获丰富的语言类型学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1