Matthijs Douze, Jérôme Revaud, C. Schmid, H. Jégou
{"title":"Stable Hyper-pooling and Query Expansion for Event Detection","authors":"Matthijs Douze, Jérôme Revaud, C. Schmid, H. Jégou","doi":"10.1109/ICCV.2013.229","DOIUrl":null,"url":null,"abstract":"This paper makes two complementary contributions to event retrieval in large collections of videos. First, we propose hyper-pooling strategies that encode the frame descriptors into a representation of the video sequence in a stable manner. Our best choices compare favorably with regular pooling techniques based on k-means quantization. Second, we introduce a technique to improve the ranking. It can be interpreted either as a query expansion method or as a similarity adaptation based on the local context of the query video descriptor. Experiments on public benchmarks show that our methods are complementary and improve event retrieval results, without sacrificing efficiency.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"24 2 1","pages":"1825-1832"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
This paper makes two complementary contributions to event retrieval in large collections of videos. First, we propose hyper-pooling strategies that encode the frame descriptors into a representation of the video sequence in a stable manner. Our best choices compare favorably with regular pooling techniques based on k-means quantization. Second, we introduce a technique to improve the ranking. It can be interpreted either as a query expansion method or as a similarity adaptation based on the local context of the query video descriptor. Experiments on public benchmarks show that our methods are complementary and improve event retrieval results, without sacrificing efficiency.