{"title":"Moringa oleifera Lamarck (1785), Moringaceae and Cancer I: A Systematic and Comprehensive Review of 24 Years of Research","authors":"Isaac Karimi","doi":"10.31557/apjcb.2022.7.1.75-96","DOIUrl":null,"url":null,"abstract":"This review was aimed to assess the anti-cancer properties of Moringa oleifera Lamarck. (Moringaceae: MO) reported from 1998 till 10 November 2021. A total 71 PubMed relevant papers were discussed here. Among all parts of MO which used to assess antitumor activities, the leaves (52%), seeds (22%), pods (7%), and phytocompounds (7%; like moringin and its congeners) would be considered as a source of putative phyto-onco-lytics or phyto-onco-statics. The partitioning of secondary metabolites with pharmacological value in source (leaf) and sink (roots, flowers, pods, callus, and fruits) organs of MO dictates the best choice of the solvents for their extraction. The polar: water (29%) > ethanol (17%) > methanol (13%) > hydro-alcohol (11%); intermediate polar: dichloromethane (4%); and nonpolar: n-hexane = ethyl acetate (7%) > chloroform (3% of studies) solvents have been employed for extractions among studies. The human colorectal cancer, leukemia, non-small cell adenocarcinoma, and breast cancer consisted 22, 14,10, and 8% of screened studies, respectively and the rest of tumors consisted less than 5% of studies. The in vitro (51%), in vivo chemically induced model (21%), and tumor graft models (8%) were reported and there were no clinical trials among studies. Totally, from 118 cell lines used, healthy cell lines (control; n = 19), MCF-7 (n = 12), HepG2 (n = 12), and Hela (n = 6) consisted top list amongst studies. From 76 anti-cancer portals curated amongst studies, induction of apoptosis (n = 29), anti-proliferation (n = 17), anti-angiogenesis (n = 8), and DNA/RNA fragmentation (n = 6) were the main antitumor portals and the cytotoxicity and anti-inflammation may be considered as minor ones. To sum up, the rational extraction and purification of MO, phytochemistry, and computational and experimental pharmacology of various extracts of MO should be pursued to decipher phyto-onco-lytic and/or phyto-onco-static drug-like phytocompounds suitable to be employed in clinical trials. ","PeriodicalId":8848,"journal":{"name":"Asian Pacific Journal of Cancer Biology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific Journal of Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31557/apjcb.2022.7.1.75-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review was aimed to assess the anti-cancer properties of Moringa oleifera Lamarck. (Moringaceae: MO) reported from 1998 till 10 November 2021. A total 71 PubMed relevant papers were discussed here. Among all parts of MO which used to assess antitumor activities, the leaves (52%), seeds (22%), pods (7%), and phytocompounds (7%; like moringin and its congeners) would be considered as a source of putative phyto-onco-lytics or phyto-onco-statics. The partitioning of secondary metabolites with pharmacological value in source (leaf) and sink (roots, flowers, pods, callus, and fruits) organs of MO dictates the best choice of the solvents for their extraction. The polar: water (29%) > ethanol (17%) > methanol (13%) > hydro-alcohol (11%); intermediate polar: dichloromethane (4%); and nonpolar: n-hexane = ethyl acetate (7%) > chloroform (3% of studies) solvents have been employed for extractions among studies. The human colorectal cancer, leukemia, non-small cell adenocarcinoma, and breast cancer consisted 22, 14,10, and 8% of screened studies, respectively and the rest of tumors consisted less than 5% of studies. The in vitro (51%), in vivo chemically induced model (21%), and tumor graft models (8%) were reported and there were no clinical trials among studies. Totally, from 118 cell lines used, healthy cell lines (control; n = 19), MCF-7 (n = 12), HepG2 (n = 12), and Hela (n = 6) consisted top list amongst studies. From 76 anti-cancer portals curated amongst studies, induction of apoptosis (n = 29), anti-proliferation (n = 17), anti-angiogenesis (n = 8), and DNA/RNA fragmentation (n = 6) were the main antitumor portals and the cytotoxicity and anti-inflammation may be considered as minor ones. To sum up, the rational extraction and purification of MO, phytochemistry, and computational and experimental pharmacology of various extracts of MO should be pursued to decipher phyto-onco-lytic and/or phyto-onco-static drug-like phytocompounds suitable to be employed in clinical trials.