Abdallah Ben Abdelkader, Youssef Mouloudi, Mohammed Amine Soumeur
{"title":"Integration of renewable energy sources in the dynamic voltage restorer for improving power quality using ANFIS controller","authors":"Abdallah Ben Abdelkader, Youssef Mouloudi, Mohammed Amine Soumeur","doi":"10.1016/j.jksues.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, grid power loss and power quality deterioration are causing many problems, especially for sensitive uses such as data centers, airports, healthcare, banking, insurance, and telecom. These issues must be resolved through energy continuity coverage and optimization. Dynamic voltage restorers (DVR) are generally used to mitigate network voltage disturbances and maintain a constant voltage value between load terminals for a short and limited duration due to limited energy storage facilities. However, this paper's proposed (DVR) system controlled by the adaptive-network fuzzy inference system (ANFIS) controller can compensate for prolonged power quality disturbances by integrating a hybrid renewable energy system (HRES) managed using classical Proportional Integral (PI) controller power management. This paper proposes a new (DVR) topology coupled with a hybrid renewable energy system (HRES) to exploit free and clean energy, consisting of a solar panel, a PEM fuel cell, and a battery storage device connected through DC-DC converters to a DC transmission, the obtained results from the simulation process of the proposed DVR system in the environment of MATLAB / Simulink showed the ability to eliminate sag that exceeded 0.9 pu in a period of more than 3 min and swells that exceeded 1.2 pu in a period that exceeded one minute. In comparison, the load voltage's total harmonic distortion THDv was reduced from 29% to 5%, and the source current total harmonic distortion THDi from 30.25% to 2.79%.</div></div>","PeriodicalId":35558,"journal":{"name":"Journal of King Saud University, Engineering Sciences","volume":"35 8","pages":"Pages 539-548"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University, Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101836392200085X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, grid power loss and power quality deterioration are causing many problems, especially for sensitive uses such as data centers, airports, healthcare, banking, insurance, and telecom. These issues must be resolved through energy continuity coverage and optimization. Dynamic voltage restorers (DVR) are generally used to mitigate network voltage disturbances and maintain a constant voltage value between load terminals for a short and limited duration due to limited energy storage facilities. However, this paper's proposed (DVR) system controlled by the adaptive-network fuzzy inference system (ANFIS) controller can compensate for prolonged power quality disturbances by integrating a hybrid renewable energy system (HRES) managed using classical Proportional Integral (PI) controller power management. This paper proposes a new (DVR) topology coupled with a hybrid renewable energy system (HRES) to exploit free and clean energy, consisting of a solar panel, a PEM fuel cell, and a battery storage device connected through DC-DC converters to a DC transmission, the obtained results from the simulation process of the proposed DVR system in the environment of MATLAB / Simulink showed the ability to eliminate sag that exceeded 0.9 pu in a period of more than 3 min and swells that exceeded 1.2 pu in a period that exceeded one minute. In comparison, the load voltage's total harmonic distortion THDv was reduced from 29% to 5%, and the source current total harmonic distortion THDi from 30.25% to 2.79%.
期刊介绍:
Journal of King Saud University - Engineering Sciences (JKSUES) is a peer-reviewed journal published quarterly. It is hosted and published by Elsevier B.V. on behalf of King Saud University. JKSUES is devoted to a wide range of sub-fields in the Engineering Sciences and JKSUES welcome articles of interdisciplinary nature.