J. Seck-Tuoh-Mora, J. Medina-Marin, E. Martinez-Gomez, Eva Selene Hernández-Gress, N. Hernández-Romero, Valeria Volpi-Leon
{"title":"Cellular particle swarm optimization with a simple adaptive local search strategy for the permutation flow shop scheduling problem","authors":"J. Seck-Tuoh-Mora, J. Medina-Marin, E. Martinez-Gomez, Eva Selene Hernández-Gress, N. Hernández-Romero, Valeria Volpi-Leon","doi":"10.24425/acs.2019.129378","DOIUrl":null,"url":null,"abstract":"Permutation flow shop scheduling problem deals with the production planning of a number of jobs processed by a set of machines in the same order. Several metaheuristics have been proposed for minimizing the makespan of this problem. Taking as basis the previous Alternate Two-Phase PSO (ATPPSO) method and the neighborhood concepts of the Cellular PSO algorithm proposed for continuous problems, this paper proposes the improvement of ATPPSO with a simple adaptive local search strategy (called CAPSO-SALS) to enhance its performance. CAPSO-SALS keeps the simplicity of ATPPSO and boosts the local search based on a neighborhood for every solution. Neighbors are produced by interchanges or insertions of jobs which are selected by a linear roulette scheme depending of the makespan of the best personal positions. The performance of CAPSO-SALS is evaluated using the 12 different sets of Taillard’s benchmark problems and then is contrasted with the original and another previous enhancement of the ATPPSO algorithm. Finally, CAPSO-SALS is compared as well with other ten classic and state-of-art metaheuristics, obtaining satisfactory results.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2019.129378","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Permutation flow shop scheduling problem deals with the production planning of a number of jobs processed by a set of machines in the same order. Several metaheuristics have been proposed for minimizing the makespan of this problem. Taking as basis the previous Alternate Two-Phase PSO (ATPPSO) method and the neighborhood concepts of the Cellular PSO algorithm proposed for continuous problems, this paper proposes the improvement of ATPPSO with a simple adaptive local search strategy (called CAPSO-SALS) to enhance its performance. CAPSO-SALS keeps the simplicity of ATPPSO and boosts the local search based on a neighborhood for every solution. Neighbors are produced by interchanges or insertions of jobs which are selected by a linear roulette scheme depending of the makespan of the best personal positions. The performance of CAPSO-SALS is evaluated using the 12 different sets of Taillard’s benchmark problems and then is contrasted with the original and another previous enhancement of the ATPPSO algorithm. Finally, CAPSO-SALS is compared as well with other ten classic and state-of-art metaheuristics, obtaining satisfactory results.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.