{"title":"Current Technical Approaches to Study RNA–Protein Interactions in mRNAs and Long Non-Coding RNAs","authors":"Johanna Mattay","doi":"10.3390/biochem3010001","DOIUrl":null,"url":null,"abstract":"It is commonly understood that RNA-binding proteins crucially determine the fate of their target RNAs. Vice versa, RNAs are becoming increasingly recognized for their functions in protein regulation and the dynamics of RNA-protein complexes. Long non-coding RNAs are emerging as potent regulators of proteins that exert unknown RNA-binding properties and moonlighting functions. A vast array of RNA- and protein-centric techniques have been developed for the identification of protein and RNA targets, respectively, including unbiased protein mass spectrometry and next-generation RNA sequencing as readout. Determining true physiological RNA and protein targets is challenging as RNA–protein interaction is highly dynamic, tissue- and cell-type-specific, and changes with the environment. Here I review current techniques for the analysis of RNA–protein interactions in living cells and in vitro. RNA-centric techniques are presented on the basis of cross-linking or the use of alternative approaches. Protein-centric approaches are discussed in combination with high-throughput sequencing. Finally, the impact of mutations in RNA–protein complexes on human disease is highlighted.","PeriodicalId":72357,"journal":{"name":"BioChem","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biochem3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is commonly understood that RNA-binding proteins crucially determine the fate of their target RNAs. Vice versa, RNAs are becoming increasingly recognized for their functions in protein regulation and the dynamics of RNA-protein complexes. Long non-coding RNAs are emerging as potent regulators of proteins that exert unknown RNA-binding properties and moonlighting functions. A vast array of RNA- and protein-centric techniques have been developed for the identification of protein and RNA targets, respectively, including unbiased protein mass spectrometry and next-generation RNA sequencing as readout. Determining true physiological RNA and protein targets is challenging as RNA–protein interaction is highly dynamic, tissue- and cell-type-specific, and changes with the environment. Here I review current techniques for the analysis of RNA–protein interactions in living cells and in vitro. RNA-centric techniques are presented on the basis of cross-linking or the use of alternative approaches. Protein-centric approaches are discussed in combination with high-throughput sequencing. Finally, the impact of mutations in RNA–protein complexes on human disease is highlighted.