Approaches to Detect Online Radicalization: A Survey

S. Pingle
{"title":"Approaches to Detect Online Radicalization: A Survey","authors":"S. Pingle","doi":"10.18535/IJSRE/V4I05.04","DOIUrl":null,"url":null,"abstract":"Online Radicalization (also called as Cyber-Terrorism or Extremism or Cyber-Racism or Cyber-Hate) is widespread and has become a major and growing concern to the people around the world. The  unprecedented growth of the Internet is leading to its widespread use among the online community for various purposes. Research shows that, low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message, due to this, various platforms on the Internet such as video sharing website, micro-blogging services, social networking websites, online discussion forums and blogosphere are being heavily misused by radical or extremist groups and users to practice several kinds of mischievous acts with concealed agendas and promote ideologies in a sophisticated manner. Automatic detection of online radicalization is a technically challenging problem because of the extensively large amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several approaches and methods proposed in the literature aiming to combat and counter online radicalization (cyber-hate and cyber-extremism) In this survey, we review various methods to detect online radicalization. We analyze these techniques, discuss limitations of existing techniques and find out research directions. 1. Ashish Sureka, Ponnurangam Kumaraguru, Atul Goyal, Sidharth Chhabra, \"Mining YouTube to  Discover Extremist Videos, Users and Hidden Communities,\" AIRS 2010, Springer, pp. 13–24,2010 2. ChalothornT, Ellman  J,  \"Using  SentiWordNet  and  Sentiment  Analysis  for  Detecting  Radical Content on Web Forums,\" Proceedings of the 6th Conference on Software, Knowledge, Information Management  and  Applications (SKIMA  2012), pp. 9-11, 2012 3. Chris Hale W, \"Extremism on the world wide web: a research review,\" Criminal Justice Studies, vol. 4, issue 25, pp. 343-356, 2012 4. Decker S, Pyrooz D, \"Gangs, Terrorism and Radicalization,\" Journal of Strategic Security, vol. 4, no. 4, pp. 151-166, 2011 5. Della Porta D, Lafree L, \"Processes of Radicalization,\" International Journal of Conflict and Violence, vol. 6, no. 1, pp. 5-10, 2012 6. Femi Richard Omotoyinbo, \"Online Radicalisation: The Net Or The Netizen?\" International Journal of Social Technologies, vol. 4, no. 1, pp. 51–61, 2014 7. Filchenkov A. A, Azarov A. A, Abramov M. V, \"What is more predictable in social media: Election outcome or protest action?\" Proceedings of the 2014 Conference on Electronic Governance and Open Society Challenges in Eurasia, EGOSE '14, ACM, pp. 157-161, 2014. 8. Fu T, Huang C. N, Chen H, \"Identification of extremist videos in online video sharing sites,\" IEEE International Conference on Intelligence and Security Informatics (ISI '09), pp. 179-181, 2009 9. H. Chen, W. Chung, J. Qin, E. Reid, M. Sageman, G. Weimann, “Uncovering the Dark Web: A case study of Jihad on the Web,” J. Amer. Soc. Inf. Sci. Technol., vol. 59, no. 8, pp. 1347–1359, 2008. 10. Huang C, Fu T, Chen H, \"Text-based video content classification for online video sharing sites,\" Journal of the American Society for Information Science and Technology, vol. 61, no. 5, pp. 891-906, 2010 11. J. H. Wang, T. Fu, H. M. Lin, H. Chen, “A framework for exploring Gray Web forums: Analysis of forum-based communities in Taiwan,” Proc. IEEE Int. Conf. ISI, pp. 498–503, 2006 12. J. Qin, Y. Zhou, and H. Chen, “A multi-region empirical study on the Internet presence of global extremist organizations,” Inf. Sys. Frontiers, vol. 13, no. 1, pp. 75–88, 2011 13. Muthiah S, Huang B, Arredondo J, Mares D, Getoor L, Katz G, Ramakrishnan N, \"Planned Protest Modeling in News and Social Media\" 14. McNamee L. G, Peterson B. L, Pen J. A, \"A call to educate, participate, invoke and indict: Understanding the communication of online hate groups,\" Communication Monographs vol. 2, no. 77, pp. 257-280, 2010 15. Myriam Munezero, Calkin Suero Montero, Tuomo Kakkonen, Erkki Sutinen, \"Automatic Detection   of Antisocial Behaviour in Texts,\" Proceedings of the 3rd International Workshop on Advances in Semantic Information Retrieval, FedCSIS’ 2013, pp. 3-10,2013 16. Ramakrishnan N, Butler P, Muthiah S, Self N, Khandpur R, Saraf P, Wang W, Cadena J, Vullikanti   A, Korkmaz G, Kuhlman C, Marathe A, Zhao L, Hua T, Chen F, Lu C. T, Huang B, Srinivasan A, Trinh K, Getoor L, Katz G, Doyle A, Ackermann C, Zavorin I, Ford J, Summers K, Fayed Y, Arredondo J, Gupta D, Mares D, \"Beating the news with embers: Forecasting civil unrest using open source indicators,\" Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pp. 1799-1808,2014 17. Rowe M, Stankovic M, Dadzie A.S, \"A Topical Crawler for Uncovering Hidden Communities of Extremist Micro-Bloggers on Tumblr,\" 2015 18. Swati Agarwal, Ashish Sureka, “A Focused Crawler for Mining Hate and Extremism Promoting   Users, Videos and Communities on YouTube,” 25th ACM conference on Hypertext and social media, pp. 294-296,2014 19. T. Anwar, M. Abulaish, “Identifying cliques in Dark Web forums — An agglomerative clustering approach,” Proc. IEEE ISI, pp. 171–173, 2012 20. Thompson R. L, \"Radicalization and the use of Social Media,\" Journal of Strategic Security, vol. 4,   no. 4, pp. 167-190,2011 21. Tarique Anwar, Muhammad Abulaish, \"Ranking Radically Infuential Web Forum Users,\" IEEE Transactions on Information Forensics and Security, vol. 10, no. 6, pp. 1289-1298, 2015","PeriodicalId":14282,"journal":{"name":"International Journal of Scientific Research in Education","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/IJSRE/V4I05.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Online Radicalization (also called as Cyber-Terrorism or Extremism or Cyber-Racism or Cyber-Hate) is widespread and has become a major and growing concern to the people around the world. The  unprecedented growth of the Internet is leading to its widespread use among the online community for various purposes. Research shows that, low barrier to publish content, allows anonymity, provides exposure to millions of users and a potential of a very quick and widespread diffusion of message, due to this, various platforms on the Internet such as video sharing website, micro-blogging services, social networking websites, online discussion forums and blogosphere are being heavily misused by radical or extremist groups and users to practice several kinds of mischievous acts with concealed agendas and promote ideologies in a sophisticated manner. Automatic detection of online radicalization is a technically challenging problem because of the extensively large amount of the data, unstructured and noisy user-generated content, dynamically changing content and adversary behavior. There are several approaches and methods proposed in the literature aiming to combat and counter online radicalization (cyber-hate and cyber-extremism) In this survey, we review various methods to detect online radicalization. We analyze these techniques, discuss limitations of existing techniques and find out research directions. 1. Ashish Sureka, Ponnurangam Kumaraguru, Atul Goyal, Sidharth Chhabra, "Mining YouTube to  Discover Extremist Videos, Users and Hidden Communities," AIRS 2010, Springer, pp. 13–24,2010 2. ChalothornT, Ellman  J,  "Using  SentiWordNet  and  Sentiment  Analysis  for  Detecting  Radical Content on Web Forums," Proceedings of the 6th Conference on Software, Knowledge, Information Management  and  Applications (SKIMA  2012), pp. 9-11, 2012 3. Chris Hale W, "Extremism on the world wide web: a research review," Criminal Justice Studies, vol. 4, issue 25, pp. 343-356, 2012 4. Decker S, Pyrooz D, "Gangs, Terrorism and Radicalization," Journal of Strategic Security, vol. 4, no. 4, pp. 151-166, 2011 5. Della Porta D, Lafree L, "Processes of Radicalization," International Journal of Conflict and Violence, vol. 6, no. 1, pp. 5-10, 2012 6. Femi Richard Omotoyinbo, "Online Radicalisation: The Net Or The Netizen?" International Journal of Social Technologies, vol. 4, no. 1, pp. 51–61, 2014 7. Filchenkov A. A, Azarov A. A, Abramov M. V, "What is more predictable in social media: Election outcome or protest action?" Proceedings of the 2014 Conference on Electronic Governance and Open Society Challenges in Eurasia, EGOSE '14, ACM, pp. 157-161, 2014. 8. Fu T, Huang C. N, Chen H, "Identification of extremist videos in online video sharing sites," IEEE International Conference on Intelligence and Security Informatics (ISI '09), pp. 179-181, 2009 9. H. Chen, W. Chung, J. Qin, E. Reid, M. Sageman, G. Weimann, “Uncovering the Dark Web: A case study of Jihad on the Web,” J. Amer. Soc. Inf. Sci. Technol., vol. 59, no. 8, pp. 1347–1359, 2008. 10. Huang C, Fu T, Chen H, "Text-based video content classification for online video sharing sites," Journal of the American Society for Information Science and Technology, vol. 61, no. 5, pp. 891-906, 2010 11. J. H. Wang, T. Fu, H. M. Lin, H. Chen, “A framework for exploring Gray Web forums: Analysis of forum-based communities in Taiwan,” Proc. IEEE Int. Conf. ISI, pp. 498–503, 2006 12. J. Qin, Y. Zhou, and H. Chen, “A multi-region empirical study on the Internet presence of global extremist organizations,” Inf. Sys. Frontiers, vol. 13, no. 1, pp. 75–88, 2011 13. Muthiah S, Huang B, Arredondo J, Mares D, Getoor L, Katz G, Ramakrishnan N, "Planned Protest Modeling in News and Social Media" 14. McNamee L. G, Peterson B. L, Pen J. A, "A call to educate, participate, invoke and indict: Understanding the communication of online hate groups," Communication Monographs vol. 2, no. 77, pp. 257-280, 2010 15. Myriam Munezero, Calkin Suero Montero, Tuomo Kakkonen, Erkki Sutinen, "Automatic Detection   of Antisocial Behaviour in Texts," Proceedings of the 3rd International Workshop on Advances in Semantic Information Retrieval, FedCSIS’ 2013, pp. 3-10,2013 16. Ramakrishnan N, Butler P, Muthiah S, Self N, Khandpur R, Saraf P, Wang W, Cadena J, Vullikanti   A, Korkmaz G, Kuhlman C, Marathe A, Zhao L, Hua T, Chen F, Lu C. T, Huang B, Srinivasan A, Trinh K, Getoor L, Katz G, Doyle A, Ackermann C, Zavorin I, Ford J, Summers K, Fayed Y, Arredondo J, Gupta D, Mares D, "Beating the news with embers: Forecasting civil unrest using open source indicators," Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pp. 1799-1808,2014 17. Rowe M, Stankovic M, Dadzie A.S, "A Topical Crawler for Uncovering Hidden Communities of Extremist Micro-Bloggers on Tumblr," 2015 18. Swati Agarwal, Ashish Sureka, “A Focused Crawler for Mining Hate and Extremism Promoting   Users, Videos and Communities on YouTube,” 25th ACM conference on Hypertext and social media, pp. 294-296,2014 19. T. Anwar, M. Abulaish, “Identifying cliques in Dark Web forums — An agglomerative clustering approach,” Proc. IEEE ISI, pp. 171–173, 2012 20. Thompson R. L, "Radicalization and the use of Social Media," Journal of Strategic Security, vol. 4,   no. 4, pp. 167-190,2011 21. Tarique Anwar, Muhammad Abulaish, "Ranking Radically Infuential Web Forum Users," IEEE Transactions on Information Forensics and Security, vol. 10, no. 6, pp. 1289-1298, 2015
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测在线激进化的方法:一项调查
网络激进化(也被称为网络恐怖主义、网络极端主义、网络种族主义或网络仇恨)广泛存在,并已成为世界各国人民日益关注的主要问题。互联网的空前增长导致其在各种目的的在线社区中广泛使用。研究表明,发布内容的低门槛,允许匿名性,提供了数百万用户的曝光和信息非常快速和广泛传播的潜力,正因为如此,互联网上的各种平台,如视频分享网站,微博服务,社交网站,网络论坛和博客被激进或极端团体和用户大量滥用,进行各种隐藏议程的恶作剧行为,并以复杂的方式宣传意识形态。在线激进化的自动检测是一个技术上具有挑战性的问题,因为大量的数据,非结构化和嘈杂的用户生成内容,动态变化的内容和对手的行为。文献中提出了几种方法和方法,旨在打击和打击在线激进化(网络仇恨和网络极端主义)。在本调查中,我们回顾了检测在线激进化的各种方法。我们对这些技术进行了分析,讨论了现有技术的局限性,并找出了研究方向。1. Ashish Sureka, Ponnurangam Kumaraguru, Atul Goyal, Sidharth Chhabra,“挖掘YouTube以发现极端主义视频、用户和隐藏社区”,AIRS 2010, Springer,第13-24页,2010。ChalothornT, Ellman J,“使用SentiWordNet和情感分析检测网络论坛上的激进内容”,第六届软件,知识,信息管理与应用会议论文集(SKIMA 2012), pp. 9-11, 2012。[4]张海涛,《网络上的极端主义:一个研究回顾》,《刑事司法研究》,第4卷,第25期,第343-356页,2012。戴克,“帮派、恐怖主义和激进化”,《战略安全杂志》,第4卷,第2期。4,第151-166页,2011。德拉·波塔·D,“激进化进程”,《国际冲突与暴力杂志》,第6卷,第6期。1, pp. 5-10, 2012Femi Richard Omotoyinbo,《网络激进化:网络还是网民?》国际社会技术杂志,第4卷,第4期。1, pp. 51-61, 2014Filchenkov A. A., Azarov A. A., Abramov M. V,“在社交媒体中,选举结果和抗议行动哪一个更容易预测?”2014年欧亚大陆电子治理和开放社会挑战会议论文集,EGOSE '14, ACM,第157-161页,2014。8. 傅涛,黄春宁,陈海,“网络视频共享网站中极端主义视频的识别”,《中国信息科学与技术》,2009年第4期,pp。陈赫,钟伟,秦,E. Reid, M. Sageman, G. Weimann,“揭露暗网:网络上圣战的案例研究”,美国。Soc。正,科学。抛光工艺。,第59卷,第5期。8,第1347-1359页,2008。10. 黄晨,傅涛,陈海,“基于文本的在线视频内容分类”,《信息科学与技术学报》,第61卷,第1期。5, pp. 891-906, 2010王建宏,傅涛,林海明,陈辉,“灰色网络论坛的研究框架:台湾地区基于论坛的社区分析”,第2期。12.中国科学院学报,2006。秦军、周勇、陈辉,“全球极端组织网络存在的多区域实证研究”,《国际信息学报》。《前沿》,第13卷,第2期。1,第75-88页,2011黄斌,张建军,张建军,张建军,“新闻与社交媒体中有计划的抗议模型”[J]。张晓明,张晓明,“教育、参与、呼吁和起诉的呼唤:对网络仇恨团体传播的理解”,《传播专刊》第2卷第1期。7, pp. 257-280, 2010milam Munezero, Calkin Suero Montero, Tuomo Kakkonen, Erkki Sutinen,“文本中反社会行为的自动检测”,第三届语义信息检索国际研讨会论文集,2013,pp. 3-10,2013。Ramakrishnan N, Butler P, Muthiah S, Self N, Khandpur R, Saraf P, Wang W, Cadena J, Vullikanti A, Korkmaz G, Kuhlman C, maratha, Zhao L, Hua T, Chen F, Lu c.t, Huang B, Srinivasan A, Trinh K, Getoor L, Katz G, Doyle A, Ackermann C, Zavorin I, Ford J, Summers K, Fayed Y, Arredondo J, Gupta D, Mares D,“与成员一起打新闻:使用开源指标预测内乱,”第20届ACM SIGKDD知识发现与数据挖掘国际会议论文集,KDD '14, pp. 1799-1808,2014。Rowe M, Stankovic M, Dadzie A. s,“在Tumblr上发现隐藏的极端主义微博博主社区的主题爬虫”,2015。 Swati Agarwal, Ashish Sureka,“一个专注于挖掘仇恨和极端主义的爬虫,促进YouTube上的用户,视频和社区,”第25届ACM超文本和社交媒体会议,第294-296页,2014。T. Anwar, M. Abulaish,“识别暗网论坛中的派系——一种聚集聚类方法”,《IEEE ISI》,第171-173页,2012年第20期。“激进化与社会媒体的使用”,《战略安全杂志》,第4卷,第1期。4, pp 167-190,2011Tarique Anwar, Muhammad Abulaish,“对极具影响力的网络论坛用户进行排名”,《IEEE信息取证与安全事务》,第10卷,第2期。6, pp. 1289-1298, 2015
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Young age pregnancy and postpartum blues incidences Kinetics And Stability Studies Of Formulated Micro/Nano Suspension Of Metronidazole Teachers’ Gender and Academic Achievement of Secondary School Studentsin Social Studies in Abakaliki-Nigeria Feministic Analysis of Manju Kapur’s A Married Woman A Two-Way Generalisation of The Chow Test: The General Case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1