The Effects of Obscuration in Passive 3-D Millimeter-wave Imaging for Human Security Screening

Xuelei Sun, N. Salmon, X. Zhuge, Julia H. Miao
{"title":"The Effects of Obscuration in Passive 3-D Millimeter-wave Imaging for Human Security Screening","authors":"Xuelei Sun, N. Salmon, X. Zhuge, Julia H. Miao","doi":"10.2528/pier23011302","DOIUrl":null,"url":null,"abstract":"|The possibility of near-(cid:12)eld passive 3-D imaging using the aperture synthesis technique is theoretically proven and highlights the opportunity for imaging the entire human body by an antenna receiving array that surrounds the body. In these scenarios there will be partial obscuration of some regions of the body, by other parts of the body. This results in some receivers in the array being able to measure emission from certain parts of the body, while others are obscured from a measurement. A model is presented which enables the effects of obscuration to be assessed for planar-like, cylindrical-like, and concave-like regions of the human body. The effect the obscuration has on the spatial resolution of the imager is evaluated by examining the 3-D point spread function, as determined by a near-(cid:12)eld aperture synthesis imaging algorithm. It is shown that over many areas of the human body, the Abbe microscope resolution of (cid:21)= 2 (5 mm@30 GHz) in a direction transverse to the human body surface is achievable, an attractive proposition for security screening. However, the spatial resolution in a direction normal to the human body surface is shown to be close to (cid:21) (10 mm@30 GHz). In regions of greater obscuration, such as in the armpits, the resolution may fall to (cid:21) (10 mm@30 GHz) and 5 (cid:21) (50 mm@30 GHz) in the directions transverse and normal to the human body surface, respectively. It is also shown by simulation using a human body solid model and the 3-D aperture synthesis imaging algorithm how the image quality changes with the number of receiving antennas.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier23011302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

|The possibility of near-(cid:12)eld passive 3-D imaging using the aperture synthesis technique is theoretically proven and highlights the opportunity for imaging the entire human body by an antenna receiving array that surrounds the body. In these scenarios there will be partial obscuration of some regions of the body, by other parts of the body. This results in some receivers in the array being able to measure emission from certain parts of the body, while others are obscured from a measurement. A model is presented which enables the effects of obscuration to be assessed for planar-like, cylindrical-like, and concave-like regions of the human body. The effect the obscuration has on the spatial resolution of the imager is evaluated by examining the 3-D point spread function, as determined by a near-(cid:12)eld aperture synthesis imaging algorithm. It is shown that over many areas of the human body, the Abbe microscope resolution of (cid:21)= 2 (5 mm@30 GHz) in a direction transverse to the human body surface is achievable, an attractive proposition for security screening. However, the spatial resolution in a direction normal to the human body surface is shown to be close to (cid:21) (10 mm@30 GHz). In regions of greater obscuration, such as in the armpits, the resolution may fall to (cid:21) (10 mm@30 GHz) and 5 (cid:21) (50 mm@30 GHz) in the directions transverse and normal to the human body surface, respectively. It is also shown by simulation using a human body solid model and the 3-D aperture synthesis imaging algorithm how the image quality changes with the number of receiving antennas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体安全筛查被动三维毫米波成像中遮挡的影响
利用孔径合成技术进行近场(cid:12)被动三维成像的可能性在理论上得到了证实,并强调了通过环绕身体的天线接收阵列对整个人体进行成像的机会。在这些情况下,身体的某些区域会被身体的其他部分部分遮挡。这导致阵列中的一些接收器能够测量身体某些部位的发射,而其他接收器则无法测量。提出了一种模型,可以对人体的平面、圆柱和凹形区域进行遮挡效果评估。通过近场(cid:12)孔径合成成像算法确定的三维点扩散函数来评估遮挡对成像仪空间分辨率的影响。研究表明,在人体的许多区域,阿贝显微镜在人体表面横向方向的分辨率(cid:21)= 2 (5 mm@30 GHz)是可以实现的,这是安全筛查的一个有吸引力的提议。然而,垂直于人体表面方向的空间分辨率接近(cid:21) (10 mm@30 GHz)。在较暗的区域,如腋窝,在与人体表面横向和垂直的方向上,分辨率可能分别降至(cid:21) (10 mm@30 GHz)和5 (cid:21) (50 mm@30 GHz)。利用人体实体模型和三维孔径合成成像算法进行仿真,显示了接收天线数量对图像质量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Associations between participation and personal factors in community-dwelling adults post-stroke. Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices Systemically Delivered, Deep-tissue Nanoscopic Light Sources Optical Neural Networks for Holographic Image Recognition (Invited Paper) Exceptional Ring by Non-Hermitian Sonic Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1