Safety and Immunogenicity of a Parenterally Administered, Structure-Based Rationally Modified Recombinant Staphylococcal Enterotoxin B Protein Vaccine, STEBVax.
Wilbur H Chen, Marcela F Pasetti, Rajan P Adhikari, Holly Baughman, Robin Douglas, Jill El-Khorazaty, Nancy Greenberg, Frederick W Holtsberg, Grant C Liao, Mardi K Reymann, Xiaolin Wang, Kelly L Warfield, M Javad Aman
{"title":"Safety and Immunogenicity of a Parenterally Administered, Structure-Based Rationally Modified Recombinant Staphylococcal Enterotoxin B Protein Vaccine, STEBVax.","authors":"Wilbur H Chen, Marcela F Pasetti, Rajan P Adhikari, Holly Baughman, Robin Douglas, Jill El-Khorazaty, Nancy Greenberg, Frederick W Holtsberg, Grant C Liao, Mardi K Reymann, Xiaolin Wang, Kelly L Warfield, M Javad Aman","doi":"10.1128/CVI.00399-16","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus produces several enterotoxins and superantigens, exposure to which can elicit profound toxic shock. A recombinant staphylococcal enterotoxin B (rSEB) containing 3 distinct mutations in the major histocompatibility complex class II binding site was combined with an alum adjuvant (Alhydrogel) and used as a potential parenteral vaccine named STEBVax. Consenting healthy adult volunteers (age range, 23 to 38 years) participated in a first-in-human open-label dose escalation study of parenteral doses of STEBVax ranging from 0.01 μg up to 20 μg. Safety was assessed by determination of the frequency of adverse events and reactogenicity. Immune responses to the vaccination were determined by measurement of anti-staphylococcal enterotoxin B (anti-SEB) IgG by enzyme-linked immunosorbent assay and a toxin neutralization assay (TNA). Twenty-eight participants were enrolled in 7 dosing cohorts. All doses were well tolerated. The participants exhibited heterogeneous baseline antibody titers. More seroconversions and a faster onset of serum anti-SEB IgG toxin-neutralizing antibodies were observed by TNA with increasing doses of STEBVax. There was a trend for a plateau in antibody responses with doses of STEBVax of between 2.5 and 20 μg. Among the participants vaccinated with 2.5 μg to 20 μg of STEBVax, ∼93% seroconverted for SEB toxin-neutralizing antibody. A strong correlation between individual SEB-specific serum IgG antibody titers and the neutralization of gamma interferon production was found in vitro STEBvax appeared to be safe and immunogenic, inducing functional toxin-neutralizing antibodies. These data support its continued clinical development. (This study has been registered at ClinicalTrials.gov under registration no. NCT00974935.).</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5139602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00399-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus produces several enterotoxins and superantigens, exposure to which can elicit profound toxic shock. A recombinant staphylococcal enterotoxin B (rSEB) containing 3 distinct mutations in the major histocompatibility complex class II binding site was combined with an alum adjuvant (Alhydrogel) and used as a potential parenteral vaccine named STEBVax. Consenting healthy adult volunteers (age range, 23 to 38 years) participated in a first-in-human open-label dose escalation study of parenteral doses of STEBVax ranging from 0.01 μg up to 20 μg. Safety was assessed by determination of the frequency of adverse events and reactogenicity. Immune responses to the vaccination were determined by measurement of anti-staphylococcal enterotoxin B (anti-SEB) IgG by enzyme-linked immunosorbent assay and a toxin neutralization assay (TNA). Twenty-eight participants were enrolled in 7 dosing cohorts. All doses were well tolerated. The participants exhibited heterogeneous baseline antibody titers. More seroconversions and a faster onset of serum anti-SEB IgG toxin-neutralizing antibodies were observed by TNA with increasing doses of STEBVax. There was a trend for a plateau in antibody responses with doses of STEBVax of between 2.5 and 20 μg. Among the participants vaccinated with 2.5 μg to 20 μg of STEBVax, ∼93% seroconverted for SEB toxin-neutralizing antibody. A strong correlation between individual SEB-specific serum IgG antibody titers and the neutralization of gamma interferon production was found in vitro STEBvax appeared to be safe and immunogenic, inducing functional toxin-neutralizing antibodies. These data support its continued clinical development. (This study has been registered at ClinicalTrials.gov under registration no. NCT00974935.).
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.