Classification of bioprosthetic valve closure sounds by a neural network using linear prediction coefficients

Zhenyu Guo, L. Durand, Howard C. Lee, L. Allard, P. Stein
{"title":"Classification of bioprosthetic valve closure sounds by a neural network using linear prediction coefficients","authors":"Zhenyu Guo, L. Durand, Howard C. Lee, L. Allard, P. Stein","doi":"10.1109/IEMBS.1992.5761068","DOIUrl":null,"url":null,"abstract":"A three layers feed-forward back-propagation neural network was trained to classify bioprosthetic valve closure sounds from 47 patients with a porcine bioprosthetic valve inserted in the aortic position. Twenty-four patients had a normal valve and 23 a degenerated one. Twelve linear prediction coefficients computed from the closure sounds were used as the network input The neural network yielded 89% correct classification in an evaluation using the leave-one-out method. This study confirmed the potential of heart sound classification by using a neural network.","PeriodicalId":6457,"journal":{"name":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"15 1","pages":"477-478"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1992.5761068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A three layers feed-forward back-propagation neural network was trained to classify bioprosthetic valve closure sounds from 47 patients with a porcine bioprosthetic valve inserted in the aortic position. Twenty-four patients had a normal valve and 23 a degenerated one. Twelve linear prediction coefficients computed from the closure sounds were used as the network input The neural network yielded 89% correct classification in an evaluation using the leave-one-out method. This study confirmed the potential of heart sound classification by using a neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用线性预测系数的神经网络对生物假体瓣膜关闭声进行分类
采用三层前馈反向传播神经网络对47例主动脉位置置入猪生物假瓣膜患者的瓣膜关闭声进行分类。24例患者瓣膜正常,23例瓣膜退化。从关闭声音中计算出的12个线性预测系数被用作网络输入,神经网络在使用留一方法的评估中产生了89%的正确率分类。本研究证实了利用神经网络进行心音分类的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the Organizing Committee A model of injury potential for myelinated nerve fiber Plenary keynote lecture President's welcome message Images of Electrocardiographic Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1