{"title":"Charging coordination of Plug-In Electric Vehicles based on the line flow limits and power losses","authors":"Prem T. Alluri, J. Solanki, S. K. Solanki","doi":"10.1109/TAPENERGY.2015.7229623","DOIUrl":null,"url":null,"abstract":"The increased popularity of Plug-In Electric Vehicles (PEVs) over the years has resulted in their large deployment across the traditional Electric Power Grid (EPG). Sudden addition of these highly intermittent, excessive capacity loads along with the increase in generation will result in potential stress, overloading of lines and efficiency degradation of the EPG. To overcome these potential issues, a coordinated PEV charging strategy is proposed in this paper to prevent the overloading of the lines and minimizing the power losses incurred by the random charging of the PEVs. Two factors referred as line flow and power loss sensitivity factors are derived from the Newton Raphson Jacobian to coordinate the charging activities of the PEVs. These sensitivity factors are used to identify the nodes and lines in the EPG that are prone to overload. Charging commands are sent to the identified nodes to assist in a coordinated charging. The proposed methodology is implemented on a small radial IEEE 6 bus distribution system and its performance is demonstrated.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"6 1","pages":"233-238"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The increased popularity of Plug-In Electric Vehicles (PEVs) over the years has resulted in their large deployment across the traditional Electric Power Grid (EPG). Sudden addition of these highly intermittent, excessive capacity loads along with the increase in generation will result in potential stress, overloading of lines and efficiency degradation of the EPG. To overcome these potential issues, a coordinated PEV charging strategy is proposed in this paper to prevent the overloading of the lines and minimizing the power losses incurred by the random charging of the PEVs. Two factors referred as line flow and power loss sensitivity factors are derived from the Newton Raphson Jacobian to coordinate the charging activities of the PEVs. These sensitivity factors are used to identify the nodes and lines in the EPG that are prone to overload. Charging commands are sent to the identified nodes to assist in a coordinated charging. The proposed methodology is implemented on a small radial IEEE 6 bus distribution system and its performance is demonstrated.