{"title":"Analysis of the vortex-dominated flow field over a delta wing at transonic speed","authors":"T. Di Fabbio, E. Tangermann, M. Klein","doi":"10.1017/aer.2023.30","DOIUrl":null,"url":null,"abstract":"\n The present work provides an advancement in the prediction of delta wing flow and an improved understanding of various flow physical phenomena which occur over the wing in transonic conditions. Scale-resolving simulations of the vortex-dominated flow around a sharp leading-edge VFE-2 wing have been performed using the SA-based IDDES model. The complex leading-edge vortex pattern with embedded shocks and subsequent shock-vortex interaction is investigated. A promising accuracy has been achieved using the high-fidelity flow field data provided by the scale-resolving simulation results. Besides the assessment of sensitivity to spatial and temporal resolution, physical aspects are presented, which are not accessible in experimental data in such detail and require scale-resolving simulation approaches. This includes the observation of the vortex system and the shocks in the fully three-dimensional flow field data. Finally, turbulence-related quantities such as eddy viscosity and resolved Reynolds-stresses and their behaviour during the vortex formation and sustaining process are analysed.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present work provides an advancement in the prediction of delta wing flow and an improved understanding of various flow physical phenomena which occur over the wing in transonic conditions. Scale-resolving simulations of the vortex-dominated flow around a sharp leading-edge VFE-2 wing have been performed using the SA-based IDDES model. The complex leading-edge vortex pattern with embedded shocks and subsequent shock-vortex interaction is investigated. A promising accuracy has been achieved using the high-fidelity flow field data provided by the scale-resolving simulation results. Besides the assessment of sensitivity to spatial and temporal resolution, physical aspects are presented, which are not accessible in experimental data in such detail and require scale-resolving simulation approaches. This includes the observation of the vortex system and the shocks in the fully three-dimensional flow field data. Finally, turbulence-related quantities such as eddy viscosity and resolved Reynolds-stresses and their behaviour during the vortex formation and sustaining process are analysed.