Dynamic Scaling Factors of Covariances for Accurate 3D Normal Distributions Transform Registration

H. Hong, B. Lee
{"title":"Dynamic Scaling Factors of Covariances for Accurate 3D Normal Distributions Transform Registration","authors":"H. Hong, B. Lee","doi":"10.1109/IROS.2018.8593839","DOIUrl":null,"url":null,"abstract":"Distribution-to-distribution normal distributions transform (NDT-D2D) is one of the fast point set registrations. Since the normal distributions transform (NDT) is a set of normal distributions generated by discrete and regular cells, local minima of the objective function is an issue of NDT-D2D. Also, we found that the objective function based on L2 distance between distributions has a negative correlation with rotational alignment. To overcome the problems, we present a method using dynamic scaling factors of covariances to improve the accuracy of NDT-D2D. Two scaling factors are defined for the preceding and current NDTs respectively, and they are dynamically varied in each iteration of NDT-D2D. We implemented the proposed method based on conventional NDT-D2D and probabilistic NDT-D2D and compared to the NDT-D2D with fixed scaling factors using KITTI benchmark data set. Also, we experimented estimating odometry with an initial guess as an application of distribution-to-distribution probabilistic NDT (PNDT-D2D) with the proposed method. As a result, the proposed method improves both translational and rotational accuracy of the NDT-D2D and PNDT-D2D.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"43 1","pages":"1190-1196"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Distribution-to-distribution normal distributions transform (NDT-D2D) is one of the fast point set registrations. Since the normal distributions transform (NDT) is a set of normal distributions generated by discrete and regular cells, local minima of the objective function is an issue of NDT-D2D. Also, we found that the objective function based on L2 distance between distributions has a negative correlation with rotational alignment. To overcome the problems, we present a method using dynamic scaling factors of covariances to improve the accuracy of NDT-D2D. Two scaling factors are defined for the preceding and current NDTs respectively, and they are dynamically varied in each iteration of NDT-D2D. We implemented the proposed method based on conventional NDT-D2D and probabilistic NDT-D2D and compared to the NDT-D2D with fixed scaling factors using KITTI benchmark data set. Also, we experimented estimating odometry with an initial guess as an application of distribution-to-distribution probabilistic NDT (PNDT-D2D) with the proposed method. As a result, the proposed method improves both translational and rotational accuracy of the NDT-D2D and PNDT-D2D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确三维正态分布变换配准的协方差动态缩放因子
分布-分布正态分布变换(NDT-D2D)是一种快速的点集配准方法。由于正态分布变换(NDT)是由离散单元和规则单元生成的正态分布的集合,因此目标函数的局部最小值是NDT- d2d的一个问题。此外,我们发现基于分布之间L2距离的目标函数与旋转对齐呈负相关。为了克服这些问题,我们提出了一种使用动态协方差标度因子来提高NDT-D2D精度的方法。分别为之前的ndt和当前的ndt定义了两个比例因子,它们在NDT-D2D的每次迭代中都是动态变化的。我们在传统NDT-D2D和概率NDT-D2D的基础上实现了该方法,并使用KITTI基准数据集与固定比例因子的NDT-D2D进行了比较。此外,我们还实验了用初始猜测估计里程数的方法,将其作为分布到分布概率无损检测(PNDT-D2D)的应用。结果表明,该方法提高了NDT-D2D和PNDT-D2D的平移和旋转精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1