D. Young, C. Teplin, S. Grover, Benjamin G. Lee, Jihun Oh, V. LaSalvia, D. Amkreutz, S. Gall, Monica M Chahal, Greg J. Couillard, T. Chuang, J. Selj, M. Deceglie, H. Atwater, H. Branz, P. Stradins
{"title":"600 mV epitaxial crystal silicon solar cells grown on seeded glass","authors":"D. Young, C. Teplin, S. Grover, Benjamin G. Lee, Jihun Oh, V. LaSalvia, D. Amkreutz, S. Gall, Monica M Chahal, Greg J. Couillard, T. Chuang, J. Selj, M. Deceglie, H. Atwater, H. Branz, P. Stradins","doi":"10.1109/PVSC.2013.6744098","DOIUrl":null,"url":null,"abstract":"We report progress made at the National Renewable Energy Laboratory (NREL) on crystal silicon solar cells fabricated by epitaxially thickening thin silicon seed layers on glass using hot-wire chemical vapor deposition. Four micron thick devices grown on single-crystal silicon layer transfer seeds on glass achieved open circuit voltages (Voc) over 600 mV and efficiencies over 10%. Other devices were grown on laser crystallized mixed phase solidification (MPS) seeds on glass and e-beam crystallized (EBC) a-Si on SiC coated glass seeds. We discuss the material quality of the various devices on seeds and summarize the prospects for the seed and epitaxy PV approach.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"29 1","pages":"0054-0057"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We report progress made at the National Renewable Energy Laboratory (NREL) on crystal silicon solar cells fabricated by epitaxially thickening thin silicon seed layers on glass using hot-wire chemical vapor deposition. Four micron thick devices grown on single-crystal silicon layer transfer seeds on glass achieved open circuit voltages (Voc) over 600 mV and efficiencies over 10%. Other devices were grown on laser crystallized mixed phase solidification (MPS) seeds on glass and e-beam crystallized (EBC) a-Si on SiC coated glass seeds. We discuss the material quality of the various devices on seeds and summarize the prospects for the seed and epitaxy PV approach.