{"title":"Satellite-Retrieved Microstructure of AgI Seeding Tracks in Supercooled Layer Clouds","authors":"D. Rosenfeld, Xing Yu, J. Dai","doi":"10.1175/JAM2225.1","DOIUrl":null,"url":null,"abstract":"Abstract NOAA Advanced Very High Resolution Radiometer (AVHRR) images revealed conspicuous tracks of glaciated cloud in thick supercooled layer clouds over central China. These tracks were identified as being artificially produced by cloud-seeding operations at the −10°C isotherm, less than 1 km below cloud tops, aimed at precipitation enhancement, by means of AgI acetone generators. The cloud composition was deduced by retrieving the cloud-top effective radius (re) and analyzing its spatial relations with cloud-top temperatures and with the visible reflectance. Cloud-top temperature varied between −13° and −17°C. The glaciation became apparent at cloud tops about 22 min after seeding. The glaciated tops sank and formed a channel in the supercooled layer cloud. The rate of sinking of about 40 cm s−1 is compatible with the fall velocity of ice crystals that are likely to form at these conditions. A thin line of new water clouds formed in the middle of the channel of the seeded track between 38 and 63 min a...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"86 1","pages":"760-767"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2225.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Abstract NOAA Advanced Very High Resolution Radiometer (AVHRR) images revealed conspicuous tracks of glaciated cloud in thick supercooled layer clouds over central China. These tracks were identified as being artificially produced by cloud-seeding operations at the −10°C isotherm, less than 1 km below cloud tops, aimed at precipitation enhancement, by means of AgI acetone generators. The cloud composition was deduced by retrieving the cloud-top effective radius (re) and analyzing its spatial relations with cloud-top temperatures and with the visible reflectance. Cloud-top temperature varied between −13° and −17°C. The glaciation became apparent at cloud tops about 22 min after seeding. The glaciated tops sank and formed a channel in the supercooled layer cloud. The rate of sinking of about 40 cm s−1 is compatible with the fall velocity of ice crystals that are likely to form at these conditions. A thin line of new water clouds formed in the middle of the channel of the seeded track between 38 and 63 min a...